
Mattermost’s Approach to Layered
Extensibility in Open Source

Corey Hulen / Co-founder and CTO, Mattermost, Inc.
Feb 2019

Mattermost as an OS
● Mattermost as a platform from the very beginning

Mattermost Platform

AI BI

Sm
ar

t
w

or
kf

lo
w

s

Sa
le

sf
or

ce

Re
al

 E
st

at
e

Fi
na

nc
e

H
ea

lth
ca

re

Et
c

Et
c

Mattermost Smart workflow Customer
SupportSmart workflow

HR

Sm
ar

t w
or

kf
lo

w
Sa

le
sf

or
ce

Sm
ar

t w
or

kf
lo

w
ER

P

Smart w
orkflo

w

Corp
orate

Dire
ctory

Smart workflow

Analytics

Smart w
orkflo

w

Operatio
ns

Embedding Applications
inside of Mattermost

De
ve

lo
pe

r
To

ol
ki

t

Mattermost has Layers!

Open Data

Open Source

Plugins

REST API/Bots

Slash Commands and Webhooks

Mattermost is Open Source

● Typical open source goodness
● Fork, change what you want (heck change everything!)
● Hard, takes a lot of resources
● People love the idea but in reality very rarely happens
● 100% of what you see in the UI is accessible from our RESTful

JSON web service API

Open Source Example
Matterhorn is a terminal client for the Mattermost chat system.
https://github.com/matterhorn-chat/matterhorn

Mattermost is Open Data

● You own 100% of your data
● Easy extraction and manipulation with SQL
● Easily chart, report, analyze
● No proprietary data models; nothing hidden

Developer Toolkit

● Incoming/Outgoing Webhooks
● Slash Commands
● Bots
● REST API
● Client-side Plugins
● Server-side Plugins

https://developers.mattermost.com

https://developers.mattermost.com

Webhooks

● Incoming Webhooks
○ Post messages to public, private and direct message channels
○ Simple HTTP POST request to a URL
○ Designed to easily allow you to post messages
○ Slack compatible

● Outgoing Webhooks
○ Post automated responses to posts made by your users
○ Uses trigger words
○ Simple HTTP POST request to a web service
○ Slack compatible

Webhooks Example

Slash Commands

● Easy way integrate external applications
● Similar to outgoing webhooks, but can be used in any channel
● Simple HTTP POST request to a URL, process response back

into channel
● Both built-in and custom slash commands
● Slack compatible

Matterbuild example

Bots

● Official and community-built drivers for our web service API
○ Javascript
○ Golang
○ PHP
○ Python
○ https://api.mattermost.com

● Golang bot sample code
○ Uses the go driver to interact with the Mattermost server
○ Login to the server, create a channel, modify a user, etc
○ https://github.com/mattermost/mattermost-bot-sample-golang

https://api.mattermost.com
https://github.com/mattermost/mattermost-bot-sample-golang

Sample Bot Example

Hubot Example

Plugins Overview

● Customize User Interfaces
○ Write a web app plugin to add to the channel header, sidebars, main menu and more. Register your

plugin against a post type to render custom posts or wire up a root component to build an entirely
new experience. All this is possible without having to fork the source code and rebase on every
Mattermost release.

● Launch Tightly Integrated Services
○ Launch and manage server plugins as services from your Mattermost server over RPC. Handle events

via real-time hooks and invoke Mattermost server methods directly using a dedicated plugin API.

● Extend the Mattermost REST API
○ Extend the Mattermost REST API with custom endpoints for use by web app plugins or third-party

services. Custom endpoints have access to all the features of the standard Mattermost REST API,
including personal access tokens and OAuth 2.0.

Customize User Interfaces (Client Side)
● registerRootComponent(component)
● registerPopoverUserAttributesComponent(component)
● registerPopoverUserActionsComponent(component)
● registerLeftSidebarHeaderComponent(component)
● registerBottomTeamSidebarComponent(component)
● registerPostMessageAttachmentComponent(component)
● registerChannelHeaderButtonAction(icon, action,

dropdownText, tooltipText)
● registerPostTypeComponent(type, component)

● registerMainMenuAction(text, action,
mobileIcon)

● registerPostDropdownMenuAction(text, action,
filter)

● registerPostDropdownMenuComponent(component)
● registerFileUploadMethod(icon, action, text)
● registerFilesWillUploadHook(hook)
● unregisterComponent(componentId)
● registerReducer(reducer)
● registerWebSocketEventHandler(event, handler)
● unregisterWebSocketEventHandler(event)
● registerReconnectHandler(handler)
● unregisterReconnectHandler()
● registerMessageWillFormatHook(hook)

Channel Header Button Example

● Add a button to the channel header
● If there is more than one button, a dropdown menu is created
● Great for things like video conferencing integration
● Our built-in Zoom integration is actually a plugin

Zoom Integration adding a Header Button

Override Post Rendering

● Register a component to render a custom body for posts
● Great for rich integrations with custom applications
● More than simple text or a screenshot
● The Zoom plugin uses this to render a custom post

Zoom Integration custom rendering

Render Component on the Team Sidebar

● Register a component fixed to the bottom
of the team sidebar

● Used in our Github plugin

Github Integration

Rewrite the Message Client Side

● Register a hook that will be called before a message is formatted into Markdown
● Used in the Walltime plugin

Walltime Plugin

 Tightly Integrated Services (Server Side)
● OnActivate() error
● Implemented() ([]string, error)
● OnDeactivate() error
● OnConfigurationChange() error
● ServeHTTP(c *plugin.Context, w http.ResponseWriter, r *http.Request)
● ExecuteCommand(c *plugin.Context, args *model.CommandArgs) (*model.CommandResponse, *model.AppError)
● UserHasBeenCreated(c *plugin.Context, user *model.User)
● UserWillLogIn(c *plugin.Context, user *model.User) string
● UserHasLoggedIn(c *plugin.Context, user *model.User)
● MessageWillBePosted(c *plugin.Context, post *model.Post) (*model.Post, string)
● MessageWillBeUpdated(c *plugin.Context, newPost, oldPost *model.Post) (*model.Post, string)
● MessageHasBeenPosted(c *plugin.Context, post *model.Post)
● MessageHasBeenUpdated(c *plugin.Context, newPost, oldPost *model.Post)
● ChannelHasBeenCreated(c *plugin.Context, channel *model.Channel)
● UserHasJoinedChannel(c *plugin.Context, channelMember *model.ChannelMember, actor *model.User)
● UserHasLeftChannel(c *plugin.Context, channelMember *model.ChannelMember, actor *model.User)
● UserHasJoinedTeam(c *plugin.Context, teamMember *model.TeamMember, actor *model.User)
● UserHasLeftTeam(c *plugin.Context, teamMember *model.TeamMember, actor *model.User)
● FileWillBeUploaded(c *plugin.Context, info *model.FileInfo, file io.Reader, output io.Writer)

(*model.FileInfo, string)

Rewrite the Message Server Side

● Lots of opportunities to hook the
message

● Before it enters into the database
● You can reject messages
● You can also send back ephemeral

messages
● After it enters into the database

Autolink Plugin

Implement a http.Handler on the Server
● ServeHTTP allows the plugin to implement the http.Handler interface.
● Requests destined for the /plugins/{id} path will be routed to the plugin.

WelcomeBot Handling Custom Actions

Thank you

Mattermost is hiring!

https://mattermost.com/careers

https://mattermost.com/careers

Mattermost Mentor Program
● Shepherding

○ Helping someone get involved in the Mattermost community
○ Need help submitting your first pull request?
○ Want some general advice?
○ Two 1-1 sessions with a core contributor

● Mentorship
○ Focused on bringing more people into the Mattermost community
○ Application process
○ 3 month program
○ Minimum commitments must be met
○ Paired with a core contributor for the entire time
○ Weekly 1-1 sessions with a core contributor

Interested? Talk with me afterwards!

Questions?

How to reach me?

● Mattermost: @corey on https://community.mattermost.com
● Twitter: @corey_hulen
● Email: corey@hulen.com

