
February 3, 2019
fosdem.org

Rob Skillington
Observability and M3, Uber NYC M3

M3 and a new age of metrics and
monitoring in an increasingly
complex world

https://fosdem.org

● Working on monitoring “observability” running computers now at Uber for

3 continuous years.

● Member of OpenMetrics, a CNCF project standardizing metrics exposition.

See openmetrics.io for more info.

Why am I here?

https://openmetrics.io

San Francisco

Seattle
New York

Amsterdam

Aarhus

Vilnius

Sofia

Hyderabad

Agenda ● High dimensionality metrics and
monitoring in an increasingly complex
world

● M3, Prometheus, Graphite

“High dimensionality metrics”
Huh?

5

● Take a single metric, such as status code delivered by our frontends

○ http_status_code

● At Uber, we have roughly a few hundred important HTTP routes we want

to drill down into the status code with the following dimensions:

○ Route (few hundred)

○ Status code (less than a few common status codes)

○ Places of operation (few hundred)

■ failures sometimes isolated to place of operation

○ App device version (few hundred)

High dimensionality metrics

You can roll up metrics to make viewing fast. For example, view status codes

by route, but across all regions for all app versions.

High dimensionality metrics

status=2xx route=/request

region=eu-west client=v1.2 status=2xx ...

status=4xx route=/request

status=5xx route=/request

region=eu-north client=v1.3 status=2xx ...

region=us-west client=v2.0 status=2xx ...

region=eu-west client=v1.1 status=5xx ...

region=eu-north client=v1.4 status=5xx ...

region=us-west client=v2.3 status=5xx ...

region=eu-west client=v3.2 status=5xx ...

region=eu-north client=v3.1 status=5xx ...

However, it is still incredibly high dimensional, just to store the raw data if you

later want to drill down on.

● Routes (eg 500) * Status code (eg 5) * Region (eg 5) * Client version (eg 20)

= 250,000 unique time series

● Expensive but not too bad..? However add any other dimensions and it

gets out of control (any multiplier on 250k explodes to millions quickly).

High dimensionality metrics

status=5xx route=/request ...

region=eu-west client=v1.0 status=5xx ...

region=eu-north client=v1.3 status=5xx ...

region=us-west client=v2.0 status=5xx ...

High dimensionality metrics

eu-north

mysql

frontend app
redis

client
v1.3

client
v2.0

eu-north

mysql

frontend app
redis

client
v1.3

client
v2.0

High dimensionality metrics

eu-north

mysql

frontend app
redis

client
v1.3

client
v2.0

eu-north

mysql

frontend app

client
v1.3

client
v2.0

redis

redis

To determine what code path to
debug, need to detect failure and
isolate to:

● Region eu-north
● Client version v2.0

● A manageable way to scale out capacity

○ A single Prometheus instance can hold N million time series

(where N does not usually reach the double digits, even on big machines)

Ok great but what do I need?

”This is fine.. I’m
okay with the

events that are
unfolding currently”

● It’s a little like playing tetris, can I fit my high cardinality metrics into an

existing Prometheus instance or do I setup a new one, what happens

when it eclipses a single instance?

Ok great but what do I need?

Metrics and Monitoring at Uber

13

Uber Workload - Ingress

~700M Pre-aggregated Metrics/s

(~130Gbps)

Storage

~33M Metrics Stored/s

(not including Replica Factor = 3)

(~50Gbps)

Index

~ 11B Unique Metric IDs

(Equivalent of thousands of Prom instances)

Egress

~ 1.5B data points per second (spikes to 5B+)

powers dashboards and 150,000 scheduled

“realtime” alerts

(~20 gigabits/sec)

M3, Prometheus and Graphite

18

Prometheus Long Term Storage

Prometheus

Grafana

Long Term
Storage
TSDB

AlertManager

Client /
Endpoint

Remote
Read/Write

(and aggregation)

M3DBM3DB

M3DB

Prometheus

Grafana

InfluxDB /
Cortex

AlertManager

TSDB

Index

etcd

Client /
Endpoint M3DB

M3
Coordinator

Remote
Read/Write

(and aggregation)

M3DB High-Level Architecture

Think Log Structured
Merge tree (LSM).. but with
almost zero compaction.

Typical LSM will have
levelled or size based
compaction, M3DB has
time window compaction
which by will avoid any
compaction of time series
data files. Also
downsampling is done as
data is streamed to the
aggregators.

● Each time series data block contains a bloom filter, an index summaries file, a

metadata per time series key and time series data file.

● The bloom filter is mmap’d and used for fast lookups to determine for large range

scan, which blocks for should be searched on disk for a given metric.

Bloom filter for each time series data block

Bloom filter API
Add([]byte)
MaybeExists([]byte) bool

Index File

Binary search in memory

Scan linearly starting at offset
provided by summaries file
binary search

Summaries File

Current value: dogCurrent value: barnCurrent value: boatCurrent value: cat

cat Bloom Filter
for 2pm to 4pm block Maybe exists

Data File

● The inverted index is similar to Lucene, it uses FST segments to built an efficient

and compressed structure for fast regexp, using Roaring Bitmaps to capture metric

IDs associated to a label value.

● Each metric’s label/tag has it’s own FST that when searched can find the Roaring

Bitmap mmap offset for the set of metric IDs associated with a label value.

Inverted Index

● For every term combination in the form of service=”foo” need to store a set of
metric IDs (integers) that match, this is called a “postings list”.

● {service=”foo”,endpoint=”bar”,client_version=”3”}
○ Do some index magic to find the 3 different sets that store service=”foo”,

endpoint=”bar” and client_version=”3”.
○ Calculate the intersection (AND) of those 3 sets, and then retrieve those

documents

● Index is broken into blocks and segments, so also need to be able to calculate
union (OR)
○ Find sets that store service=”foo” postings list in the 12PM->2PM block and

the 2PM->4 PM block and then calculate their union (OR)

Postings Lists

● Bitmap Container
○ Exactly the same as a regular bitmap, but always from 0 -> 2^16
○ (2^16) / 8 -> Always uses exactly 8KiB of memory

● Sorted Array Container
○ Sorted array of uint16 -> []uint16
○ Grows dynamically
○ 2 bytes of memory per value

■ Minimum size: 2 bytes!
■ Maximum size: 131 KiB :(

● “Run” Container
○ Optimized for long sequences of continuous values
○ Array of uint16 pairs -> []struct{start, length uint16}
○ Ideal scenario: all numbers in a 2^16 range exist in the set -> 4 bytes of memory!

Roaring Bitmap

Roaring Bitmap

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7Key Prefix

Container

Only need keys/containers for chunks that have data in that
range, otherwise we can leave them out entirely.

0 -> 2^16 2^16 -> 2^17 2^17 -> 2^17
+ 2^16Values Stored

● Same APIs as a normal bitmap, but adapts to your workload
● Break the 2^32 number space into chunks of size 2^16

○ (2^32) / (2^16) == 2^16 chunks of 2^16

● For each chunk, store the values in that range within a “container”
○ Use a different container type for each chunk based on data density

● Can imagine it as a: map[uint16]*Container

Roaring Bitmap

● Choose containers based on cardinality / presence of continuous sequences.
○ Can represent both sparse and dense sets efficiently.
○ Grows to very large integer spaces (uint64) due to the chunking mechanism.

● When union or intersection, stack the containers on top of each other and perform as
efficient as possible set operation based on container types.

Array Array Bitmap Bitmap Run Run null null

1 4095 4096 8000 65,536 0 ->
9,500 0 0Cardinality

Container

0 1 2 3 4 5 6 7Key Prefix

● M3DB can be deployed on premise without any dependencies.

● M3DB also can run on Kubernetes and the M3DB k8s operator

can manage your cluster.

○ See more at https://github.com/m3db/m3db-operator

● Just requires two roles M3DB and M3 Coordinator to get started.

● Clustered version open sourced and can scale to billions of time

series.

● Read more at https://eng.uber.com/m3

Powerful but also kinda easy to use

https://github.com/m3db/m3db-operator
https://eng.uber.com/m3

Graphite, Statsd, Carbon?

Host
Client

Client

Host
Client

Client

Host
Client

Client M3 Query
EngineM3DB

PromQLProm
M3

Coordinator

Statsite

Prom

Statsd

Carbon
Relay

Carbon

Whisper
DB

Graphite
Web

Grafana

Graphite

Graphite, Statsd, Carbon?

Host
Client

Client

Host
Client

Client

Host
Client

Client M3 Query
EngineM3DB

PromQLProm
M3

Coordinator

Statsite
M3

Coordinator

Prom

Statsd

Carbon
Relay

M3
Coordinator

Carbon

Whisper
DB

Graphite
Web

Grafana

Graphite

● Multi-language with support for PromQL and Graphite

● Written in Go and can sustain much higher QPS than graphite-web

● More here https://eng.uber.com/billion-data-point-challenge

M3 Query Engine

https://eng.uber.com/billion-data-point-challenge/

Parallelized Compressed Blocks

Series A

Series B

Series C

Block 1
t1 t10

Compressed TS

Compressed TS

Compressed TS

Block 2
t10 t20

Compressed TS

Compressed TS

Compressed TS

Block 3
t20 t30

Compressed TS

Compressed TS

Compressed TS

JIT Decompression + Lazy Function Evaluation

Series A

Series B

Series C

Block
 t1 t2 t3 t4 t5 t6...…

Compressed TSCompressed TSRemaining Compressed TS368

Compressed TSCompressed TSRemaining Compressed TS

Compressed TSCompressed TSRemaining Compressed TS

250

102

72 = (368 + 250 + 102) / 10 - scaleToSeconds function lazily evaluated
after sum even though it precedes sum in the query.Result:

Demo

● How to configure m3coordinator for ingesting Prometheus and Graphite metrics.

● Adding m3coordinator as a Prometheus and Graphite data source.

● Sending metrics and graphing them in Grafana.

● The setup for the demo is a gist on GitHub at http://bit.ly/m3fosdem.

http://bit.ly/m3fosdem

Today

Host
Client

Client

Host
Client

Client

Host
Client

Client

M3
Query
Engine

M3DB

Graphite

PromQL

Prom
M3

Coordinator

Statsite
M3

Coordinator

Prom

Statsd

Carbon
Relay

M3
Coordinator

Carbon

H1 2019

1. Better guides, simpler to configure and use out of the box.

2. Horizontally scalable metrics collection with OpenMetrics scraping from

M3Collector and possibly M3Aggregator.

3. Horizontally Carbon and Statsd aggregation with M3Aggregator instead of manual

HA and sharding configuration of Graphite metrics with M3Coordinator.

H2 2019

Contribute and help discuss:

- Mail (m3db@googlegroups.com)

- Gitter (gitter.im/m3db)

- GitHub issues (github.com/m3db/proposal/issues)

Roadmap

mailto:m3db@googlegroups.com
https://gitter.im/m3db
https://github.com/m3db/proposal/issues

Future

Host

Collector
Client

Client

Host

Client

Host
Client

Client

M3
Aggregator

M3
Query
Engine

M3DB

Prom
M3

Coordinator

Prom

Statsd

Carbon

Graphite

PromQL

Questions?
GitHub and Web
https://github.com/m3db/m3, https://m3db.io

Mailing List
https://groups.google.com/forum/#!topic/m3db

Gitter (like IRC, except.. it’s not IRC 😔)
https://gitter.im/m3db

M3 Eng Blog Post
https://eng.uber.com/m3

(we’re hiring)
M3

https://github.com/m3db/m3
https://m3db.io
https://groups.google.com/forum/#!topic/m3db
https://gitter.im/m3db
https://eng.uber.com/m3

Thank you

Proprietary © 2018 Uber Technologies, Inc. All rights reserved. No part of this
document may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval systems, without permission in writing from
Uber. This document is intended only for the use of the individual or entity to
whom it is addressed. All recipients of this document are notified that the
information contained herein includes proprietary information of Uber, and
recipient may not make use of, disseminate, or in any way disclose this
document or any of the enclosed information to any person other than
employees of addressee to the extent necessary for consultations with
authorized personnel of Uber.

Questions: email ospo@uber.com

Follow our Facebook page:
www.facebook.com/uberopensource

