
Roll your own compiler
Easy IR generation

Kai Nacke

3 February 2019

LLVM dev room @ FOSDEM‘19

What are the obstacles of IR generation?

03.02.2018 Roll your own compiler | Kai Nacke 2

Modula-2

• First implementation in 1979 for the PDP-11

• Complete language
• Carefully designed syntax

• Module concept

• Low-level facilities and procedure types

• Large code base available
• The Lilith operating system

• The GMD compiler toolbox (“cocktail”)

• Later standardized as ISO 10514

03.02.2018 Roll your own compiler | Kai Nacke 3

(* Taken from PIM4, page 25. *)

MODULE gcdlcm;

FROM InOut IMPORT ReadInt, WriteLn,

 WriteString, WriteInt;

VAR x, y, u, v: INTEGER;

BEGIN

 WriteString("x = "); ReadInt(x); WriteLn;

 WriteString("y = "); ReadInt(y);

 u := x; v := y;

 WHILE x # y DO

 IF x > y THEN

 x := x - y; u := u + v

 ELSE

 y := y - x; v := v + u

 END

 END;

 WriteInt(x, 6); WriteInt((u+v) DIV 2, 6); WriteLn

END gcdlcm.

m2lang – The LLVM-based Modula-2 compiler

03.02.2018 Roll your own compiler | Kai Nacke 4

.m2

AST Source

ANTLR

Decorated
AST

Semantic Codegen

LLVM IR

• Modula-2 grammar provided by ANTLR
• Semantic phase and IR generation hand-coded

• Semantic phase uses hand-coded AST
• Goal: replace ANTLR with RD-parser

Source will be published here: https://github.com/redstar/m2lang

https://github.com/redstar/m2lang

Basic blocks

• IR instructions go into a basic block

• A basic block is a single entry single exit section of code
• Entry is with first instruction, usually marked with a label

• Ends with a terminating instruction, e.g. conditionally/unconditionally branch,
return

• Optimization is usually applied to basic blocks

• All basic blocks of a function form a control flow graph (CFG)

03.02.2018 Roll your own compiler | Kai Nacke 5

if:

 %6 = load i32, i32* %3, align 4

 %7 = load i32, i32* %4, align 4

 %8 = icmp ne i32 %6, %7

 br i1 %8, label %then, label %else

The naive approach to IR generation

• Define a visitor holding pointer to current basic block

• Traverse the AST and generate IR
• Create a new basic block if needed

03.02.2018 Roll your own compiler | Kai Nacke 6

The trouble with naive approach

• Naive approach works well with simple arithmetic

• Now consider nested IF-THEN-ELSE-END structures

03.02.2018 Roll your own compiler | Kai Nacke 7

IF a > 0 THEN

 IF b > c THEN

 (* ... *)

 ELSE

 (* ... *)

 END

ELSE

 (* ... *)

END

; …

 br label %end4

; …

end4:

 br label %end5

;…

end5:

• Current block can
be empty
(“END”)

• Generates blocks
with branch
instruction only

The gap between AST and LLVM IR

• The AST is more closely to the textual representation

• The basic blocks form a control flow graph

• Generation of „branch only“ basic blocks is result of this mismatch

03.02.2018 Roll your own compiler | Kai Nacke 8

AST CFG of basic blocks

How to resolve

• Do not care – let LLVM optimize it away
• Simple

• Induce the CFG on the AST
• Just adds a pointer to the AST („next basic block“)

• Can be constructed very fast with recursive visitor

• Explicitly construct the CFG
• Costly if only done for construction of IR

03.02.2018 Roll your own compiler | Kai Nacke 9

Transform AST into high-level CFG

• Goal is to transform the AST into a representation closer to a CFG

• Lower high-level constructs in low-level constructs
• Replace FOR, WHILE, REPEAT with LOOP/EXIT

• Replace AND/OR with nested IF

• Introduce GOTO
• Lowering every implicit jump into a GOTO creates a CFG

• Think how to preserve debug metadata!

• You now have created your own IR!

03.02.2018 Roll your own compiler | Kai Nacke 10

LOOP

 IF a > b THEN

 EXIT

 END;

 (* Stmts *)

END

WHILE a > b DO

 (* Stmts *)

END

When is another IR needed?

• Creating another IR can be helpful
• Elaborate type checking
• Scope checking
• Generating synthetic code (e.g. cleanup handlers)

• Do only when needed
• Modula-2 seems to be simple enough to go without new IR

• Be careful
• Do not replicate LLVM functionality at a higher level
• Consider adding a new LLVM pass instead

03.02.2018 Roll your own compiler | Kai Nacke 11

03.02.2018 Roll your own compiler | Kai Nacke 12

Thank you!

