
It was working yesterday!
Investigating regressions with llvmlab bisect

FOSDEM’19 Leandro Nunes

$whoami
● DevOps Engineer at Arm

○ Infrastructure for toolchains CI, test and benchmark

● LNT contributor

Getting Started

● When investigating a bug or performance change, finding which commit
introduced it can be very helpful to understand the problem

● The process of looking into changes and finding which commit causes a given

behaviour is called code bisection

○ In projects with many commits a day (like LLVM, Clang, etc.), bisecting can be a time
consuming task

○ Automated bisection can use clever ways to navigate you repository, helping to speed up the
process

Code Bisection
● Is the iterative process of looking for which commit introduced a given change

in behaviour, for example
○ crashes
○ performance regressions
○ when something was fixed, etc.

● Bisecting usually requires
○ A repository that contains sequential relationship metadata

○ A set of checks that help us to decide whether a given version is “good” or “bad”

latest

Automated Code Bisection
● Source control tools commonly offer bisection as a feature

○ git bisect
○ svn bisect
○ hg bisect

● Pros
○ Fine grained bisection
○ Flexibility to build with all the options you want

● Cons
○ Need to rebuild every time
○ Broken revisions

Automated Code Bisection
● As source control tools are agnostic to what is being under bisection, all need

to be setup by the user

● In projects with large code bases and many commits every day, like LLVM
and Clang, the need of building each revision on demand can make this
process time consuming

● llvmlab bisect is a tool that speeds up of bisecting LLVM and Clang

llvmlab bisect

llvmlab bisect
● Contributed in 2015 by Chris Matthews and Daniel Dunbar

● Written in Python, specifically for bisecting LLVM related projects

● Documentation here:
○ https://github.com/llvm/llvm-zorg/blob/master/llvmbisect/docs/llvmlab_bisect.rst

https://github.com/llvm-mirror/zorg/blob/master/llvmbisect/docs/llvmlab_bisect.rst

llvmlab bisect → Installation

$ virtualenv -p $(which python2.7) v
$. v/bin/activate
$ git clone https://github.com/llvm-mirror/zorg.git
$ cd zorg/llvmbisect
$ python setup.py install
$ llvmlab
Usage: llvmlab command [options]

...

optional

llvmlab bisect → Basic Usage

$ llvmlab bisect <options> <test case>

1. obtain a build from the build cache
2. create a sandbox
3. run the test case (predicates)
4. navigate through versions and repeat the process to find the commit causing

the issue

llvmlab bisect → Concepts

● Build cache
● Sandbox
● Predicates

○ Variables
○ Test filters

llvmlab bisect → Build Cache
● The build cache hosts pre-built packages, generated by CI systems like

Jenkins and Buildbot

● Various types of packages grouped in different builders (x86, Armv7,
AArch64, etc.)

● Packages are stored in Google Cloud Storage

● Armv7 and AArch64 native toolchains were recently introduced
○ http://lab.llvm.org:8011/builders/clang-armv7-linux-build-cache
○ http://lab.llvm.org:8011/builders/clang-aarch64-linux-build-cache

http://lab.llvm.org:8011/builders/clang-armv7-linux-build-cache
http://lab.llvm.org:8011/builders/clang-aarch64-linux-build-cache

https://community.arm.com/tools/b/blog/posts/accelerating-open-source-llvm-development

llvmlab bisect → Populate Build Cache

Takes around

16 minutes

https://community.arm.com/tools/b/blog/posts/accelerating-open-source-llvm-development

llvmlab bisect → Populate Build Cache

llvmlab bisect → Explore Build Cache
● Listing existing “build names” or “builds”

$ llvmlab ls
clang-aarch64-linux
clang-armv7-linux
clang-cmake-aarch64
clang-cmake-armv7a
clang-cmake-mips
clang-cmake-mipsel
clang-stage1-configure-RA
clang-stage1-configure-RA_build
clang-stage2-Rthinlto
clang-stage2-cmake-RgTSan
clang-stage2-configure-Rlto
clang-stage2-configure-Rlto_build
clang-stage2-configure-Rthinlto_build

default

llvmlab bisect → Build Cache
● Using a specific builder

$ llvmlab bisect -b clang-aarch64-linux <test case>

llvmlab bisect → Concepts
● Build cache

● Sandbox
● Predicates

○ Variables
○ Test filters

llvmlab bisect → Sandbox
● Each revision pulled from the build cache is extracted on a temporary

directory
○ This temporary directory is the “sandbox”

● By default, sandboxes are kept under /tmp and deleted just after the test
execution on that specific revision is completed

● It is possible to preserve sandboxes by using “-s <directory path>” option on
command line

llvmlab bisect → Sandbox
● Using a custom sandbox

$ llvmlab bisect -s ~/llvm_bisect_sandbox <test case>

llvmlab bisect → Concepts
● Build cache
● Sandbox

● Predicates
○ Variables
○ Test filters

llvmlab bisect → Predicates
● The commands used to guide your bisecting process

● Can be provided by command line or as a shell script
○ Can also use any other command line tool available on your local system

$ llvmlab bisect “%(path)s/bin/clang test.c”

llvmlab bisect → Variables
● Used in your test script to point to values that will be replaced by the bisecting

tool

● These are all the variables currently available
○ sandbox: the path to the sandbox directory.
○ path: the path to the build under test.
○ revision: the revision number of the build.
○ build: the build number of the build under test.
○ clang: the path to the clang binary of the build if it exists.
○ clang++: the path to the clang++ binary of the build if it exists.
○ libltodir: the path to the directory containing libLTO.dylib, if it exists

llvmlab bisect → Variables
● When provided via command line, they will be used as named arguments on

Python printf() syntax
○ “%(path)s”
○ “%(sandbox)s”
○ “%(revision)s”

● When used in a shell script, they will be injected as $TEST_<VAR NAME>
○ ${TEST_PATH}

○ ${TEST_SANDBOX}
○ ${TEST_REVISION}

llvmlab bisect → Variables
● Using a variable on command line

$ llvmlab bisect “%(path)s/bin/clang crash.c”

● Using a variable on shell script

$ llvmlab bisect bash run.sh #!/bin/bash

${TEST_PATH}/bin/clang crash.c

llvmlab bisect → Test Filters
● Extra values to be used to evaluate in the bisection process

● The available filters are
○ result: boolean value, True when the current predicate result is PASS
○ user_time
○ sys_time
○ wall_time

llvmlab bisect → Test Filters
● Using a test filter

$ llvmlab bisect “%% result and user_time < .5 %%” <test case>

llvmlab bisect
● Useful command line options

○ --very-verbose enables detailed logging
○ --reuse-sandbox prevent build cache items to be extracted if already present
○ --min-rev=NNNN sets the minimum revision to be used
○ --max-rev=NNNN sets the maximum revision to be used

Demonstrations

Demonstration #1
● “Clang crashes when calling a function while both omitting a parameter and

misspelling a parameter”
○ https://bugs.llvm.org/show_bug.cgi?id=40286

https://bugs.llvm.org/show_bug.cgi?id=40286

Demonstration #1 → Command Line

llvmlab bisect \
--reuse-sandbox \
--very-verbose \
--max-rev=352299 \
-s ~/Project/bisect_sandbox/ \
-b clang-armv7-linux \
/bin/sh -c '%(path)s/bin/clang -fsyntax-only test.c 2>&1 | \
 grep "undeclared identifier"'

Demonstration #1 - Notes
● In a real world situation (i.e. omitting --reuse-sandbox) it will test 23

versions of the toolchain, taking around 3 minutes to download and extract
the packages (Raspberry Pi 3B+)

○ Total time is around 1h 10min (23 toolchains to test * 3 minutes each)

● Based on our experience generating the toolchains for the build-cache,
building the toolchains takes around 10 minutes

○ Total time would be 3h 50min (23 toolchains to test * 10 minutes each)

● Also important to consider that not every revision is able to build

Demonstration #2
● “DAGCombiner hangs in an infinite loop”

○ https://bugs.llvm.org/show_bug.cgi?id=39098

https://bugs.llvm.org/show_bug.cgi?id=39098

Demonstration #2 → Command Line

llvmlab bisect \
--reuse-sandbox \
--very-verbose \
--max-rev=352299 \
-s ~/Project/bisect_sandbox/ \
-b clang-armv7-linux \
bash run.sh

#!/bin/sh

ulimit -t 10; \
${TEST_PATH}/bin/llc -O0 test.ll -debug-pass=Executions

Final Remarks

Final remarks
● Automated bisecting is a valuable tool to easily find what commit triggered a

change in behaviour

● Using llvmlab bisect can save a lot of time as it uses pre-compiled
toolchains, stored in the cloud (the build cache)

● The build cache now contains native toolchains for for armv7-linux and
aarch64-linux

● For the upcoming changes regarding the move from svn to git on LLVM
repositories, changes will be needed to keep llvmlab working

Works on Arm
● The infrastructure that builds the contents of the build cache uses resources

from Works on Arm

● Works on Arm offers free of charge Arm machines to open source projects to
run build and testing jobs

● Application is as easy as opening a GitHub ticket!

https://www.worksonarm.com

Thanks!

FOSDEM’19 Leandro Nunes

