Agenda

- USB and Audio
- Audio Class 1.0, 2.0
- USB Audio Class 3.0
- Current status in Linux mainline
- Challenges
- Q&A
USB and Audio Class 1.0, 2.0
Universal Serial Bus

- USB = Universal Serial Bus
- Designed to standardize connection of peripherals to PC
- First release: 1996 (23 years old!)
- Nowadays: up to 20 Gbits/s
- Simple for end-user ("plug & play")
History: USB and Audio

USB 1.0/1.1
1.5/12 MBits/s
Half duplex

USB 2.0
480 MBits/s
Half duplex

USB 3.0
5 GBits/s
Full duplex

USB Audio Class 1.0
1996

USB Audio Class 2.0
2000

USB Audio Class 3.0
2006

USB 3.1
10 GBits/s
2008

USB 3.2
20 GBits/s
2013

USB 3.1
2016

USB 3.2
2017
USB Audio Class 1.0

- First USB audio spec released
- Full Speed (12 MBits/s) limited
- Simple (relatively)
- Has Basic Audio Device specification
 - optional to implement
- MIDI
- ALSA support in 2002
USB Audio Class 2.0

- Incorporates USB High Speed support
- Clocks improvements
- More audio controls
- Extensive support for interrupts from internal Entities
- Incompatible with UAC1
- ALSA support: 2010
USB Audio Class 1 and 2 limitations

- Power management
- Incompatibility between versions
USB Audio Class 3.0
USB Audio Class 3.0

- Support of USB Super Speed
- Mandatory BADD profiles support
- Power Domains
- Connectors descriptor
USB Audio Class 3.0

- Support of USB Super Speed
- Mandatory BADD profiles support
- Power Domains
- Connectors descriptor
- New class-specific String descriptors
- Support of LPM (Link Power Management)
- Burst modes
- Incompatible with UAC1 and UAC2
 - But has backward-compatible implementation for old hosts
USB Audio Class 3.0

Supported in **Linux** before a real HW available on the market!
UAC3 BADD specification

- BADD = Basic Audio Device Definition
- Defines simple UAC3 devices like headset or speaker
- Mandatory to implement

Important: has no Audio Class-specific USB descriptors
 - Guess it!
 - A headache for popular OS with full USB stack

- Useful for hosts with limited USB stack support
 - like microcontrollers
UAC3 BADD profiles

- 3 topologies are defined
 - BAlF (Basic Audio Input Function)
 - BAOF (Basic Audio Output Function)
 - BAIOF (Basic Audio Input/Output Function)
- mono or stereo only
- 48 kHz sampling rate only
- 16 bits and 24 bits samples
- Burst Mode support
- LPM/L1 power state support
UAC3 BADD profile example

BAIOF topology

https://www.usb.org/sites/default/files/USB_Audio_v3.0.zip (BasicAudioDevice30.pdf)
UAC3 Power Domains (PD)

- PD is a zone within the Audio Function
 - can group multiple elements
- Host can control power consumption levels
- PD may be switched to a low power state
 - e.g. if not used, parts of UAC3 device can consume less power
UAC3 Power Domains

BAIOF topology

https://www.usb.org/sites/default/files/USB_Audio_v3.0.zip (BasicAudioDevice30.pdf)
UAC3 compatibility with old hosts
Current UAC3 status in Linux mainline

<table>
<thead>
<tr>
<th>Feature</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial UAC3 support</td>
<td>v4.17</td>
</tr>
<tr>
<td>BADD profiles support</td>
<td>v4.18</td>
</tr>
<tr>
<td>Connector insertion</td>
<td>v4.18</td>
</tr>
<tr>
<td>Power Domains</td>
<td>v4.19</td>
</tr>
<tr>
<td>USB Configuration switching</td>
<td>v4.20</td>
</tr>
<tr>
<td>UAC3 Gadget driver</td>
<td>in progress (v5.xx?)</td>
</tr>
<tr>
<td>Strings parsing</td>
<td>-</td>
</tr>
</tbody>
</table>
UAC3 spec summary

- Can work on old Hosts
 - with no UAC3 driver
- Has mandatory BADD profiles support
 - Basic support is easy to implement in low-end equipment
UAC3 spec summary (cont.)

- Significant power saving improvements
 - Parts of device may be put in low-power state
 - Burst modes in data transfers
 - As per Synopsys’ PoC, power consumption is comparable to 3.5mm jack analog headset solutions
UAC3 spec summary (cont.)

- A real alternative to 3.5mm analog jack solutions
- Already supported by Linux!
Challenges
Challenge: UAC3 documentation quality

- UAC3 spec was released by USB-IF
- has mistakes and missing parts
 - contacted usb.org over email with no answer
 - thanks to Pierre-Louis Bossart for info from unreleased doc
Challenge: write driver without a real UAC3 hardware

How it’s done?

- use QEMU and dummy_hcd.ko
- write UAC3 gadget driver first
- then write UAC3 host (ALSA) driver
- test both on PC (host) <-> BeagleBoneBlack (gadget)
 - how to deal with bugs on both sides?
Challenge: write driver without a real UAC3 hardware
Challenge: lack of reviews in community

Lack of patches review and testing at the beginning

- UAC3 initial support patch is about 1500 LoC
- was not tested on a real hardware
 - tested on custom UAC3 gadget implementation only
- got only few reviews
Challenge: competing implementations of BADD

How to deal with missing descriptors? Two approaches proposed

○ #1: build missing descriptors during enumeration
 ■ more generic, but more difficult
 ■ covered only few profiles
Challenge: competing implementations of BADD

How to deal with missing descriptors? Two approaches proposed

○ #1: build missing descriptors during enumeration
 ■ more generic, but more difficult
 ■ covered only few profiles

○ #2: initialize ALSA structures in-place
 ■ simpler implementation
 ■ no need to keep whole descriptors in the driver
 ■ covers all profiles
Challenges

Switching between UAC1/2, BADD and Full UAC3 configurations

- Who should select and switch configuration
 - kernel, userspace or both?
 - need a tool similar to usb_modeswitch?
- In-kernel switching accepted by USB maintainers
Q&A
Thank you
Links

https://www.usb.org/sites/default/files/USB_Audio_v3.0.zip
https://usb.org/sites/default/files/Audio2.0_final.zip