From the idea to the prototype using FLOSS

Arnaud Ferraris
arnaud.ferraris@collabora.com
02/03/2019
Who am I?

• Software Engineer at Collabora
 - Low-level development (kernel, bootloader, base system...)
 - Embedded software

• Formerly owner of A-wai Amplification
 - Designed & crafted custom tube amplifiers for guitar and bass guitar
 - First real-world experience with electronics design
From the idea to the prototype using FLOSS

- Testing & validating your idea
- Designing the PCB
- A case for your project
Testing & validating your idea
Testing & validating your idea

• Innovative idea
 - Can it work?
 - Will it work?

• When in doubt, simulate!
 - Qucs http://qucs.sourceforge.net/
 - Ngspice http://ngspice.sourceforge.net/

• Draft schematics
 - Good old paper
 - JSchema http://jschem.bplaced.net/
Proof of Concept

- Off-the-shelf modules
 - Adafruit
 - Sparkfun
 - Seeedstudio
- Breadboard
- Prototype shield
Components selection

- Widely available
- Available, comprehensive and correct datasheets
- Sufficient performances
- Though-hole mounting
The proto-prototype

- Validate global hardware design
- Lots of trial & error
 - Modification-friendly platform
- Not a prototype yet
 - Quite ugly
 - Fragile
 - Dangerous
Designing the PCB
PCB design tools

- Proprietary software were mandatory for a long time

- 2 big FLOSS suites
 - KiCAD http://kicad-pcb.org/
 - Fritzing http://fritzing.org/
Fritzing

- The most recent (2008)
- “Maker”-oriented
- Pros:
 - Fully integrated (includes an Arduino IDE!)
 - User-friendly interface
 - Multiple design modes (breadboard, PCB...)
 - Arduino, Raspberry Pi & Sparkfun modules in the default library
Fritzing

• Cons
 - Limited library: only popular components & modules
 - New model creation is quite complex
 - Difficult to use for complex and/or exotic projects
KiCAD

- The elder (1992), and the most widely used (Olimex, Purism...)
- 2 main software (eeschema & pcbnew) + useful tools
- Pros:
 - Very actively maintained (CERN)
 - Comprehensive libraries
 - Advanced routing
 - Simulation (SPICE), 3D previews
KiCAD

- Cons:
 - Not really user-friendly (mouse wheel, keyboard shortcuts...)
 - No user interface coherency
 - Insufficient communication between softwares
PCB manufacturing

• At home
 - Need specific equipment and space
 - Requires using toxic products
 - Double-sided boards and/or thin tracks are tricky to manage

• Professional manufacturing
 - Cheap for small PCBs
 - Minimum order of 5 to 10 units
 - Lots of manufacturers to choose from →
 https://pcbshopper.com
Other useful software

- **Horizon** https://github.com/carrotIndustries/horizon
 - Modern EDA with a recent codebase
 - Uses KiCAD’s router!

- **gEDA** http://www.geda-project.org/
 - Seems to be lagging behind KiCAD

- **Visolate** https://github.com/Traumflug/Visolate
 - Original take on PCB manufacturing
 - No longer maintained
A case for your project
LibreCAD

- 2D-only
- Digital drawing board
- Useful for laser-cutting
- 3D printing obviously out of reach
OpenSCAD

- Software developer’s mechanical CAD
- Code your own shape + 3D preview
- Powerful but not exactly user-friendly
FreeCAD

- Parametric 3D modeling
- User interface close to industry standards
- Classical workflow (sketch \rightarrow shape)
From the idea to the prototype using FLOSS

Questions?
From the idea to the prototype using FLOSS

Thank you!