horizon EDA

what’s new

Lukas Kramer

03.02.2019

FOSDEM 2019
Motivation

Why write an EDA package from scratch in 2016?

• Convenient and collaborative management of symbols, etc. avoiding redundancy
• Proper support for parts
• Unified editor
• Schematic editor that knows about nets
• Rule-driven design
• Explicit references (i.e. not by name / location)
• Make use of OpenGL 3 features
• Playground for experimentation
Why write an EDA package from scratch in 2016?

- Convenient and collaborative management of symbols, etc. avoiding redundancy
- Proper support for parts
- Unified editor
- Schematic editor that knows about nets
- Rule-driven design
- Explicit references (i.e. not by name / location)
- Make use of OpenGL 3 features
- Playground for experimentation
Implementation

C++14
Implementation

\[\sim 70 \text{ kLOC} \]

C++14
Implementation

C++14

∼ 70 kLOC

Gtk3 ≥ 3.20

C++14
Implementation

\[\sim 70 \text{ kLOC} \]

\[\text{C++14} \]

\[\text{Gtk3} \geq 3.20 \]

Builds and runs on Linux and Windows
Implementation

\[\sim 70 \text{ kLOC}\]

\[
\begin{align*}
\text{JSON} \\
\text{Gtk3} \geq 3.20
\end{align*}
\]

Builds and runs on Linux and Windows
Implementation

499bf624-b2f1-4366-8b9a-0eef2c8fbb3f \sim 70 \text{ kLOC}

\texttt{JSON}\hspace{2cm}\texttt{C++14}

\texttt{Gtk3} \geq 3.20

Builds and runs on Linux and Windows
Implementation

UUIDs

JSON

Gtk3 ≥ 3.20

~ 70 kLOC

C++14

Builds and runs on Linux and Windows
What’s wrong with libraries

- Like a file system with only one level of hierarchy
- Not a database
What’s wrong with libraries

- Like a file system with only one level of hierarchy
- Not a database

The Pool

- Each item is an individual JSON file
- Metadata is stored in a SQLite database
- Only contains real parts / parts that can be mapped to a real part
The Pool

Entity
- Gate A
- Gate B
- Gate P
- Gate ...

Unit 1

Unit 2

Symbol 1

Symbol 2

Part
- Entity
- Package

Package
- Pad 1
- Pad 2
- Pad n

Padstack A

Padstack B
The Pool
The Pool

Part
- Entity
- Package

Entity
- Gate A
- Gate B
- Gate P
- Gate ...

Package
- Pad 1
- Pad 2
- Pad n

Unit 1 → Symbol 1
Unit 2 → Symbol 2

Padstack A

Padstack B
The Pool

Part
- Entity
- Package

Entity
- Gate A
- Gate B
- Gate P
- Gate ...

Package
- Pad 1
- Pad 2
- Pad n

Unit
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20

Padstack A

Symbol 1

Padstack B

Bomazi, Wikimedia Commons, CC-BY-SA

Lukas K., FOSDEM 2019 5 / 20
The Pool

Entity

1.55mm 1.0mm
get-parameter [solder_mask_expansion]
2 *
+xy
set-shape [mask-ob obround]

1.15mm
get-parameter [solder_mask_expansion]
+

1.55mm
get-parameter [solder_mask_expansion]
2 * +
set-shape [mask-rect rectangle]

...
The Pool
The Pool

Entity • Package • Gate A • Gate B • Gate P • Gate ...

Package • Pad 1 • Pad 2 • Pad n • Unit 1 • Unit 2 • Padstack A • Padstack B • Symbol 1 • Symbol 2

Bomazi, Wikimedia Commons, CC-BY-SA

Lukas K., FOSDEM 2019
What’s new

First real-world board
What’s new
First real-world board
What’s new

Length tuning
What’s new

BOM Export

<table>
<thead>
<tr>
<th>QTY</th>
<th>MPN</th>
<th>Manufacturer</th>
<th>Value</th>
<th>Ref. Des.</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>CPL-CAP-X7R-0603-100NF-50V</td>
<td>CPL</td>
<td>100 nF</td>
<td>C102, C...</td>
<td>C0603</td>
</tr>
<tr>
<td>27</td>
<td>CPL-CAP-X7R-0603-1UF-25V</td>
<td>CPL</td>
<td>1 µF</td>
<td>C110, C...</td>
<td>C0603</td>
</tr>
<tr>
<td>20</td>
<td>CPL-RES-0603-10K-0.1W</td>
<td>CPL</td>
<td>10 kΩ</td>
<td>R102, R...</td>
<td>R0603</td>
</tr>
<tr>
<td>9</td>
<td>CPL-RES-0603-681-0.1W</td>
<td>CPL</td>
<td>681 Ω</td>
<td>R105, R...</td>
<td>R0603</td>
</tr>
<tr>
<td>9</td>
<td>150060G57000</td>
<td>Würth Elektronik</td>
<td>150060G57000</td>
<td>D102, D...</td>
<td>0603 LED</td>
</tr>
<tr>
<td>9</td>
<td>CPL-CAP-X7R-0402-1NF-50V</td>
<td>CPL</td>
<td>1 nF</td>
<td>C402, C...</td>
<td>C0402</td>
</tr>
<tr>
<td>8</td>
<td>CPL-CAP-X5R-0805-10UF-16V</td>
<td>CPL</td>
<td>10 µF</td>
<td>C101, C...</td>
<td>C0805</td>
</tr>
<tr>
<td>8</td>
<td>HKM105CG330J1V</td>
<td>Taiyo Yuden</td>
<td>33 pF</td>
<td>C610, C...</td>
<td>C0402</td>
</tr>
<tr>
<td>7</td>
<td>HKM105CG101J1V</td>
<td>Taiyo Yuden</td>
<td>100 µF</td>
<td>C403, C...</td>
<td>C0402</td>
</tr>
<tr>
<td>6</td>
<td>CPL-RES-0402-100-0.063W</td>
<td>CPL</td>
<td>100 Ω</td>
<td>R202, R...</td>
<td>R0402</td>
</tr>
<tr>
<td>5</td>
<td>BLM18AG601SN1D</td>
<td>Murata</td>
<td>BLM18AG601SN1D</td>
<td>FB101, ...</td>
<td>C0603</td>
</tr>
<tr>
<td>5</td>
<td>FC0402E050R0BST1</td>
<td>Vishay</td>
<td>50 Ω</td>
<td>R703, R...</td>
<td>R0402</td>
</tr>
<tr>
<td>5</td>
<td>C1210C47M4PACTU</td>
<td>KEMET</td>
<td>47 µF</td>
<td>C113, C...</td>
<td>C1210</td>
</tr>
<tr>
<td>5</td>
<td>TPS7A4700RGWR</td>
<td>Texas Instruments</td>
<td>TPS7A4700RGWR</td>
<td>U103, U...</td>
<td>RGW</td>
</tr>
<tr>
<td>4</td>
<td>CPL-RES-0603-150-0.1W</td>
<td>CPL</td>
<td>150 Ω</td>
<td>R602, R...</td>
<td>R0603</td>
</tr>
<tr>
<td>4</td>
<td>CRCW0402498FKEDC</td>
<td>Vishay</td>
<td>50 Ω</td>
<td>R401, R...</td>
<td>R0402</td>
</tr>
<tr>
<td>4</td>
<td>LQW18AN10G00D</td>
<td>Murata</td>
<td>100 nH</td>
<td>L401, L4...</td>
<td>LQW18AN..00</td>
</tr>
<tr>
<td>4</td>
<td>CBR04C101F3GC</td>
<td>KEMET</td>
<td>100 µF</td>
<td>C707, C...</td>
<td>C0402</td>
</tr>
<tr>
<td>4</td>
<td>C0603C829D5GACTU</td>
<td>KEMET</td>
<td>8.2 µF</td>
<td>C202, C...</td>
<td>C0603</td>
</tr>
<tr>
<td>4</td>
<td>LSM107BJ06MALTD</td>
<td>Taiyo Yuden</td>
<td>10 µF</td>
<td>C725, C...</td>
<td>C0603</td>
</tr>
<tr>
<td>4</td>
<td>CPL-RES-0603-120-0.1W</td>
<td>CPL</td>
<td>120 Ω</td>
<td>R601, R...</td>
<td>R0603</td>
</tr>
</tbody>
</table>
What’s new

Parametric part search

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Package</th>
<th>Value</th>
<th>Voltage rating</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taiyo Yuden</td>
<td>C1206</td>
<td>1.00 pF</td>
<td>6.3 V</td>
<td>X7R</td>
</tr>
<tr>
<td></td>
<td>C0805</td>
<td>10.00 pF</td>
<td>10 V</td>
<td>X7R</td>
</tr>
<tr>
<td></td>
<td>C0603</td>
<td>12.00 pF</td>
<td>16 V</td>
<td>X7R</td>
</tr>
<tr>
<td></td>
<td>C0402</td>
<td>18.00 pF</td>
<td>25 V</td>
<td>X7R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.00 pF</td>
<td>50 V</td>
<td>X7R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.00 pF</td>
<td>100 V</td>
<td>X7R</td>
</tr>
</tbody>
</table>

- **Manufacturer**: Taiyo Yuden
- **Package**: C0402
- **Value**: 100.00 pF
- **Voltage rating**: 100 V
- **Type**: COG/NPO

Lukas K., FOSDEM 2019
What’s new

Smart head up display
What's new
Smart head up display
What’s new
Smart head up display
What’s new

Copying placement and tracks – Motivation
What's new

Copying placement and tracks – Schematic
What’s new
Copying placement and tracks – Board
What’s new

Copying placement and tracks – Board
What’s new

Copying placement and tracks – Board
What’s new

Even more

- Incremental search
- Smooth zooming
- Title blocks
- Customizable keyboard shortcuts
- Customizable colors
- Multithreaded DRC
- Edit board from bottom side
- Calculations in numerical entries
- Lasso and paint selection
- Keepouts
What’s next

Release 1.0
Release 1.0
Improve out of the box experience
User docs
github.com/carrotIndustries/horizon

github.com/carrotIndustries/x-band-tx
Friends & Testers

People on the internet
That’s it