
Hardware/Software Co-Design for Efficient 
Microkernel Execution

Martin Děcký 
martin.decky@huawei.com 

February 2019



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 2

Who Am I

Passionate programmer and operating systems enthusiast

With a specific inclination towards multiserver microkernels

HelenOS developer since 2004

Research Scientist from 2006 to 2018

Charles University (Prague), Distributed Systems Research Group

Senior Research Engineer since 2017

Huawei Technologies (Munich), German Research Center, Central 
Software Institute, OS Kernel Lab



3Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution

Microkernel Multiserver 
Systems are better than 

Monolithic Systems
3



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 4

Monolithic OS Design is Flawed

Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is 
Flawed: Microkernel-based Designs Improve Security, ACM 9th Asia-
Pacific Workshop on Systems (APSys), 2018

“While intuitive, the benefits of the small TCB have not been quantified to 
date. We address this by a study of critical Linux CVEs, where we examine 
whether they would be prevented or mitigated by a microkernel-based 
design. We find that almost all exploits are at least mitigated to less than 
critical severity, and 40 % completely eliminated by an OS design based 
on a verified microkernel, such as seL4.”



5Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution

Problem Statement5



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 6

Problem Statement

Microkernel design ideas go as back as 1969

RC 4000 Multiprogramming System nucleus (Per Brinch Hansen)

Isolation of unprivileged processes, inter-process communication, 
hierarchical control

Even after 50 years they are not fully accepted as mainstream

Hardware and software used to be designed independently

Designing CPUs used to be an extremely complicated and costly process

Operating systems used to be written after the CPUs were designed

Hardware designs used to be rather conservative



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 7

Problem Statement (2)

Mainstream ISAs used to be designed in a rather conservative way

Can you name some really revolutionary ISA features since IBM 
System/370 Advanced Function?

Requirements on the new ISAs usually follow the needs of the 
mainstream operating systems running on the past ISAs

No wonder microkernels suffer performance penalties compared to 
monolithic systems

The more fine-grained the architecture, the more penalties it suffers

Let us design the hardware with microkernels in mind!



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 8

The Vicious Cycle

CPUs do not support
microkernels properly



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 9

The Vicious Cycle

CPUs do not support
microkernels properly

Microkernels suffer
perfromance penalties



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 10

The Vicious Cycle

CPUs do not support
microkernels properly

Microkernels are not
in the mainstream

Microkernels suffer
perfromance penalties



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 11

The Vicious Cycle

CPUs do not support
microkernels properly

Microkernels are not
in the mainstream

Microkernels suffer
perfromance penalties

No requirements on
CPUs from microkernels



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 12

The Vicious Cycle

CPUs do not support
microkernels properly

Microkernels are not
in the mainstream

Microkernels suffer
perfromance penalties

No requirements on
CPUs from microkernels



13Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution

Any Ideas?



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 14

Communication between Address Spaces

Control and data flow between subsystems

Monolithic kernel

Function calls
Passing arguments in registers and on the stack
Passing direct pointers to memory structures

Multiserver microkernel

IPC via microkernel syscalls
Passing arguments in a subset of registers
Privilege level switch, address space switch
Scheduling (in case of asynchronous IPC)
Data copying or memory sharing with page granularity



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 15

Communication between Address Spaces (2)

Is the kernel round-trip of the IPC necessary?

Suggestion for synchronous IPC: Extended Jump/Call and Return instructions 
that also switch the address space

Communicating parties identified by a “call gate” (capability) containing the target 
address space and the PC of the IPC handler (implicit for return)

Call gates stored in a TLB-like hardware cache (CLB)
CLB populated by the microkernel similarly to TLB-only memory management 
architecture

Suggestion for asynchronous IPC: Using CPU cache lines as the buffers for the 
messages

Async Jump/Call, Async Return and Async Receive instructions

Using the CPU cache like an extended register stack engine



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 16

Communication between Address Spaces (3)

Bulk data

Observation: Memory sharing is actually quite efficient for large amounts 
of data (multiple pages)

Overhead is caused primarily by creating and tearing down the shared 
pages

Data needs to be page-aligned

Sub-page granularity and dynamic data structures

Suggestion: Using CPU cache lines as shared buffers
Much finer granularity than pages (typically 64 to 128 bytes)
A separate virtual-to-cache mapping mechanism before the standard
virtual-to-physical mapping



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 17

Fast Context Switching

Current microsecond-scale latency hiding mechanisms

Hardware multi-threading

Effective

Does not scale beyond a few threads

Operating system context switching

Scales for any thread count

Too slow (order of 10 µs)

Goal: Finding a sweet spot between the two mechanisms



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 18

Fast Context Switching (2)

Suggestion: Hardware cache for contexts

Again, similar mechanism to TLB-only memory management

Dedicated instructions for context store, context restore, context switch, context 
save, context load

Context data could be potentially ABI-optimized

Autonomous mechanism for event-triggered context switch (e.g. external 
interrupt)

Efficient hardware mechanism for latency hiding

The equivalent of fine/coarse-grained simultaneous multithreading
The software scheduler is in charge of setting the scheduler policy
The CPU is in charge of scheduling the contexts based on ALU, cache and other resource
availability



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 19

User Space Interrupt Processing

Extension of the fast context switching mechanism

Efficient delivery of interrupt events to user space device drivers

Without the routine microkernel intervention

An interrupt could be directly handled by a preconfigured hardware context in 
user space

A clear path towards moving even the timer interrupt handler and the scheduler from 
kernel space to user space

Going back to interrupt-driven handling of peripherals with extreme low latency 
requirements (instead of polling)

The usual pain point: Level-triggered interrupts

Some coordination with the platform interrupt controller is probably needed
to automatically mask the interrupt source



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 20

Capabilities as First-Class Entities

Capabilities as unforgeable object identifiers

But eventually each access to an object needs to be bound-checked and 
translated into the (flat) virtual address space

Suggestion: Embedding the capability reference in pointers

RV128 (128-bit variant of RISC-V) would provide 64 bits for the capability 
reference and 64 bits for object offset

128-bit flat pointers are probably useless anyway

Besides the (somewhat narrow) use in the microkernel, this could be useful 
for other purposes

Simplifying the implementation of managed languages’ VMs

Working with multiple virtual address spaces at once



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 21

Prior Art

Nordström S., Lindh L., Johansson L., Skoglund T.: Application Specific 
Real-Time Microkernel in Hardware, 14th IEEE-NPSS Real Time 
Conference, 2005

Offloading basic microkernel operations (e.g. thread creation, context 
switching) to hardware shown to improve performance by 15 % on 
average and up to 73 %

This was a coarse-grained approach

Hardware message passing in Intel SCC and Tilera TILE-G64/TILE-
Pro64

Asynchronous message passing with tight software integration



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 22

Prior Art (2)

Hajj I. E,, Merritt A., Zellweger G., Milojicic D., Achermann R., Faraboschi 
P., Hwu W., Roscoe T., Schwan K.: SpaceJMP: Programming with Multiple 
Virtual Address Spaces, 21st ACM ASPLOS, 2016

Practical programming model for using multiple virtual address spaces on 
commodity hardware (evaluated on DragonFly BSD and Barrelfish)

Useful for data-centric applications for sharing large amounts of memory between 
processes

Intel IA-32 Task State Segment (TSS)

Hardware-based context switching

Historically, it has been used by Linux

The primary reason for removal was not performance, but portability



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 23

Prior Art (3)

Intel VT-x VM Functions (VMFUNC)

Efficient cross-VM function calls

Switching the EPT and passing register arguments

Current implementation limited to 512 entry points

Practically usable even for very fine-grained virtualization with the 
granularity of individual functions

Liu Y., Zhou T., Chen K., Chen H., Xia Y.: Thwarting Memory Disclosure with 
Efficient Hypervisor-enforced Intra-domain Isolation, 22nd ACM SIGSAC 
Conference on Computer and Communications Security, 2015

– “The cost of a VMFUNC is similar with a syscall”
– “… hypervisor-level protection at the cost of system calls”

SkyBridge paper to appear at EuroSys 2019



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 24

Prior Art (4)

Woodruff J., Watson R. N. M., Chisnall D., Moore S., Anderson J., Davis B., Laurie 
B., Neumann P. G., Norton R., Roe. M.: The CHERI capability model: Revisiting RISC 
in the an age of risk, 41st ACM Annual International Symposium on Computer 
Architecture, 2014

Hardware-based capability model for byte-granularity memory protection

Extension of the 64-bit MIPS ISA

Evaluated on an extended MIPS R4000 FPGA soft-core

32 capability registers (256 bits)

Limitation: Inflexible design mostly due to the tight backward compatibility with a 64-bit 
ISA

Intel MPX

Several design and implementation issues, deemed not production-ready



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 25

Summary

Traditionally, hardware has not been designed to accommodate the 
requirements of microkernel multiserver operating systems

Microkernels thus suffer performance penalties

This prevented them from replacing monolithic operating systems and closed 
the vicious cycle

Hardware design is hopefully becoming more accessible and democratic

E.g. RISC-V

Co-designing the hardware and software might help us gain the benefits 
of the microkernel multiserver design with no performance penalties

However, it requires some out-of-the-box thinking



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 26

Acknowledgements

OS Kernel Lab at Huawei Technologies

Javier Picorel

Haibo Chen



Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution 27

Huawei Dresden R&D Lab

Focusing on microkernel research, design and development

Basic research

Applied research

Prototype development

Collaboration with academia and other technology companies

Looking for senior operating system researchers, designers, developers and 
experts

Previous microkernel experience is a big plus

“A startup within a large company”

Shaping the future product portfolio of Huawei

Including hardware/software co-design via HiSilicon



28Martin Děcký, FOSDEM, February 3rd 2019 Hardware/Software Co-Design for Efficient Microkernel Execution

Q&A



Thank You!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

