

Will you boot Haiku,
on a non intel platform,

no BIOS winter?

Booting Haiku on non-x86, a never-ending story.

François Revol
revol@free.fr

mailto:revol@free.fr

Haiku?

● Free Software Operating System
● Inspired by the BeOS
● Our own kernel
● Our on GUI

BeOS: Always on the run

● Hobbit BeBox prototype…
– AT&T EOLed Hobbit in 1994

● PPC BeBox (2 603e)✕
– Be stopped making hardware

● PPC Mac (pre-G3)
– Then Steve said “you won’t get the specs” 😠

● Intel PC
– “He Who Controls the Bootloader” (2001)

https://birdhouse.org/beos/byte/30-bootloader/

Jean-Louis Gassée quote

“I once preached peaceful coexistence
with Windows.

You may laugh at my expense -- I deserve it.”

https://twitter.com/gassee

Booting on PC

● BIOS → MBR {Bootman,GRUB chainload}
● MBR→ partition boot sector (stage1)

– Needs partition offset (makebootable)
● Shouldn’t be required

● stage1→ haiku_loader
● haiku_loader → kernel_x86

https://www.haiku-os.org/blog/mmlr/2009-02-08_makebootable_what_and_why_and_how_do_it_manually/
https://dev.haiku-os.org/ticket/12644

haiku_loader

● Now in haiku_loader.hpkg (uncompressed)
● Sets graphics mode (for boot splash)
● Loads kernel, modules… from BFS

– … or initrd-like tar.gz 😏

● Sets up MMU, FPU…
● And calls the BIOS for many things…
● Calls the kernel with struct *kernel_args

– Which contains platform_args and arch_args

Challenges

● Since R1/beta1: Packaging
– Almost reproducible build
– But requires strict dependencies

● Haiku needs Haiku to build
– Easy on x86

● Bootstrap builds = easy to break
● C++ everywhere

– C++ issue currently on ARM bootstrap

https://dev.haiku-os.org/ticket/14842

PowerPC

● Started long long ago…
– Pegasos 1 … buggy OF

● (some years passed)
● Sam460ex & other AmigaOS-compatibles

– U-Boot (heavily modded)

● QEMU Mac PPC always had issues
● BeBox

– Very dumb bootrom; needs PEF binary

OpenFirmware

● Nice, even cleaner than BIOS
● Except for ACPI-like things

– Clean power-off = keep OF mappings
– Maybe use an emulator?

● We do this for VESA BIOS already

● Standardized bindings
● Framebuffer calls too high-level

– Get phys addr?

AmigaOne X-1000

● You read the specs.
● The specs says “It uses CFE”.
● You implement CFE support in your loader.
● It doesn’t work.
● You notice it runs an OF payload to run Linux.
● 6 years later, you remove CFE support.

* As an homage to “Adventures in Graphics Drivers”
(Be Newsletter vol.4 1999)

https://en.wikipedia.org/wiki/AmigaOne_X1000
https://en.wikipedia.org/wiki/Common_Firmware_Environment
https://www.haiku-os.org/legacy-docs/benewsletter/Issue4-8.html#Engineering4-8

ACube Sam460ex (PPC)

● Embedded board
● Book-E CPU

– No page tables baby, TLBs and that’s it®
– PAE (including for I/O…) + I/O on
– “Bringing PowerPC Book E to Linux” (2003) (3 tries)

● U-Boot fork form Acube
– Custom API for AmigaOS loader (Parthenope) 😒

● Not what we need anyway

– How do I get the framebuffer? Ended up hardcoding hw @ 😨

● (Start of) QEMU target mostly? upstreamed by Zoltan Balaton

http://acube-systems.biz/index.php?page=hardware&pid=5
https://www.kernel.org/doc/ols/2003/ols2003-pages-340-350.pdf

Booting on Sam460ex…

setenv booth1 'setenv ipaddr 192.168.4.100;
tftpboot 0x4000000
192.168.4.2:haiku_loader_linux.ub'
setenv booth2 'tftpboot 0x8000000
192.168.4.2:haiku_initrd.ub'
setenv booth3 'tftpboot 0xc000000
192.168.4.2:sam460ex.dtb'
setenv booth4 'bootm 0x4000000 0x8000000 0xc000000
plop'
setenv booth 'run booth1; run booth2; run booth3;
run booth4'
saveenv
run booth

PPC Macintosh (QEMU)

● Used to have OpenHackware
– Not really Forth, just signature matching

● Replaced with OpenBIOS
● PCI bus memory at 0x80000000

– … and no translation declared in OF tree 😱
– Move kernel load address?

BeBox

● A blue box,
bigger on the inside…

 No, not this one!
● Port started recently
● Loader builds and is

found by the ROM
● WIP: fix PEF ld output

– Retro68 might help

https://github.com/autc04/Retro68

PPC TODO

● Dump OF tree to an FDT early in haiku_loader
● Cleanup sam460ex branch
● Finish PEF support in ld
● Finish bebox branch

https://github.com/mmuman/haiku/commits/sam460ex
https://github.com/mmuman/haiku/commits/bebox

ARM

● Started long ago (GSoC)
● “Cool there’s a BIOS-like API in U-Boot!”

– 1 week passed… “can’t find the entry point!”
– “Oh yeah, it’s for NetBSD, so nobody cares”

● Loads the kernel
● Broke
● Fixed
● Broke…

U-Boot

● So yeah, no API 🙄
● mkimage supports -O …
● If memory size is fixed in FDT, you’re lucky.
● Doesn’t know about BFS…
● Where’s the framebuffer info in the FDT? 🖳

– But, wait, there’s simple-framebuffer binding!
● So why nobody cares? 😁

● Let’s look at the global data…

https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/display/simple-framebuffer.txt

U-Boot

● typedef struct uboot_gd {
// those are the only few members that we can trust
// others depend on compile-time config
struct board_data *bd; // arch-dependent as well...
uint32 flags;
uint32 baudrate;

#ifdef __ARM__ // !???
uint32 have_console;
uint32 reloc_off;
uint32 env_addr;
uint32 env_valid;
uint32 fb_base; // <- THIS I WANT! But where’s WxH?

#endif
} uboot_gd;

U-Boot

● mkimage -O ==> set operating system to 'os'

● Nice, let’s add Haiku!
– But existing boards won’t support it anyway…

● Ok, let’s just fake NetBSD,
– start_netbsd(struct board_info *bd, struct image_header *image, const char

*consdev, const char *cmdline)

● Ok, let’s just boot as raw,
– start_raw(int argc, const char **argv)

● Ok, let’s just fake Linux. But which one? 😅
– start_linux(int argc, int archnum, void *atags)

{ // newer U-Boot pass the FDT in atags
 return start_gen(0, NULL, NULL, atags); }

U-Boot TODO

● Separate firmware repository (kallisti5)☑
● MMC image tool (☑ rune by kallisti5)
● Clean up loader gfx code…
● Assume FDT /chosen/framabuffer
● Write board-specific helper cmds to patch FDT

– We can link that to specific U-Boot builds…
● When we have the source

– Or patch FDT in haiku_loader

https://github.com/haiku/firmware
https://www.haiku-os.org/blog/kallisti5/2018-05-19_rune_-_haiku_images_on_arm/
https://github.com/haiku/rune

M68K (≥ 68030)

● Mostly for fun™
● Targets Atari Falcon & Amiga (with lots of RAM)

– DOS-like boot floppy with checksum variations
– Weird video modes, custom chips…

● Some hardware still produced
– Firebee (ColdFire Atari compatible)
– Apollo Vampire 68080 cards for Amiga & Atari

● TOS & AmigaDOS usable from haiku_loader 😎

http://firebee.org/fb-bin/index?&lng=EN
http://www.apollo-accelerators.com/

Demo

M68K (as of 2010)

Sparc, MIPS…

● Nothing to see here, move along
– (barely started, and removed)
– (but if you make it work, please send patches)

(U)EFI

● GPT support ☑
● Bulk of the work by JessicaH since 2014
● De-x86zation by kallisti5 for ARM support
● EFI doesn’t know about BFS…

– Manual copy of loader to the FAT
– Not yet automatically done in R1/beta1

https://www.haiku-os.org/guides/uefi_booting/

RISC-V

● 2018-05-02: elf: Add aarch64 and riscv defines
● 2018-11-04: build: Add riscv architecture
● 2018-12-05: Finally some stubs \o/
● Please send dev boards our way 😋

I want to help! Where do I start?

● www.haiku-os.org/ …/getting-started
● cgit. …/docs/develop/kernel/ports
● Pick your target…
● dev. …/SubmittingPatches !

https://www.haiku-os.org/development/getting-started
https://git.haiku-os.org/haiku/tree/docs/develop/kernel/ports
https://dev.haiku-os.org/wiki/CodingGuidelines/SubmittingPatches

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

