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on a non intel platform, 

no BIOS winter?

Booting Haiku on non-x86, a never-ending story.
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Haiku?

● Free Software Operating System
● Inspired by the BeOS
● Our own kernel
● Our on GUI



  

BeOS: Always on the run

● Hobbit BeBox prototype…
– AT&T EOLed Hobbit in 1994

● PPC BeBox (2  603e)✕
– Be stopped making hardware

● PPC Mac (pre-G3)
– Then Steve said “you won’t get the specs” 😠

● Intel PC
– “He Who Controls the Bootloader” (2001)

https://birdhouse.org/beos/byte/30-bootloader/


  

Jean-Louis Gassée quote

“I once preached peaceful coexistence 
with Windows. 

You may laugh at my expense -- I deserve it.”

https://twitter.com/gassee


  

Booting on PC

● BIOS → MBR {Bootman,GRUB chainload}
● MBR→ partition boot sector (stage1) 

– Needs partition offset (makebootable)
● Shouldn’t be required

● stage1→ haiku_loader
● haiku_loader → kernel_x86

https://www.haiku-os.org/blog/mmlr/2009-02-08_makebootable_what_and_why_and_how_do_it_manually/
https://dev.haiku-os.org/ticket/12644


  

haiku_loader

● Now in haiku_loader.hpkg (uncompressed)
● Sets graphics mode (for boot splash)
● Loads kernel, modules… from BFS

– … or initrd-like tar.gz 😏

● Sets up MMU, FPU…
● And calls the BIOS for many things…
● Calls the kernel with struct *kernel_args 

– Which contains platform_args and arch_args 



  

Challenges

● Since R1/beta1: Packaging
– Almost reproducible build
– But requires strict dependencies

● Haiku needs Haiku to build
– Easy on x86

● Bootstrap builds = easy to break
● C++ everywhere

– C++ issue currently on ARM bootstrap

https://dev.haiku-os.org/ticket/14842


  

PowerPC

● Started long long ago…
– Pegasos 1 … buggy OF

● (some years passed)
● Sam460ex & other AmigaOS-compatibles

– U-Boot (heavily modded)

● QEMU Mac PPC always had issues
● BeBox

– Very dumb bootrom; needs PEF binary



  

OpenFirmware

● Nice, even cleaner than BIOS
● Except for ACPI-like things

– Clean power-off = keep OF mappings
– Maybe use an emulator?

● We do this for VESA BIOS already

● Standardized bindings
● Framebuffer calls too high-level

– Get phys addr?



  

AmigaOne X-1000

● You read the specs.
● The specs says “It uses CFE”.
● You implement CFE support in your loader.
● It doesn’t work.
● You notice it runs an OF payload to run Linux.
● 6 years later, you remove CFE support.

* As an homage to “Adventures in Graphics Drivers” 
(Be Newsletter vol.4 1999)

https://en.wikipedia.org/wiki/AmigaOne_X1000
https://en.wikipedia.org/wiki/Common_Firmware_Environment
https://www.haiku-os.org/legacy-docs/benewsletter/Issue4-8.html#Engineering4-8


  

ACube Sam460ex (PPC)

● Embedded board
● Book-E CPU

– No page tables baby, TLBs and that’s it®
– PAE (including for I/O…) + I/O on 
– “Bringing PowerPC Book E to Linux” (2003) (3 tries)

● U-Boot fork form Acube
– Custom  API for AmigaOS loader (Parthenope) 😒

● Not what we need anyway

– How do I get the framebuffer?  Ended up hardcoding hw @ 😨

● (Start of) QEMU target mostly? upstreamed by Zoltan Balaton

http://acube-systems.biz/index.php?page=hardware&pid=5
https://www.kernel.org/doc/ols/2003/ols2003-pages-340-350.pdf


  

Booting on Sam460ex…

setenv booth1 'setenv ipaddr 192.168.4.100; 
tftpboot 0x4000000 
192.168.4.2:haiku_loader_linux.ub'
setenv booth2 'tftpboot 0x8000000 
192.168.4.2:haiku_initrd.ub'
setenv booth3 'tftpboot 0xc000000 
192.168.4.2:sam460ex.dtb'
setenv booth4 'bootm 0x4000000 0x8000000 0xc000000 
plop'
setenv booth 'run booth1; run booth2; run booth3; 
run booth4'
saveenv
run booth



  

PPC Macintosh (QEMU)

● Used to have OpenHackware
– Not really Forth, just signature matching

● Replaced with OpenBIOS
● PCI bus memory at 0x80000000

– … and no translation declared in OF tree 😱
– Move kernel load address?



  

BeBox

● A blue box, 
bigger on the inside…

    No, not this one!
● Port started recently
● Loader builds and is 

found by the ROM
● WIP: fix PEF ld output

– Retro68 might help

https://github.com/autc04/Retro68


  

PPC TODO

● Dump OF tree to an FDT early in haiku_loader
● Cleanup sam460ex branch
● Finish PEF support in ld
● Finish bebox branch

https://github.com/mmuman/haiku/commits/sam460ex
https://github.com/mmuman/haiku/commits/bebox


  

ARM

● Started long ago (GSoC)
● “Cool there’s a BIOS-like API in U-Boot!”

– 1 week passed… “can’t find the entry point!”
– “Oh yeah, it’s for NetBSD, so nobody cares”

● Loads the kernel
● Broke
● Fixed
● Broke…



  

U-Boot

● So yeah, no API 🙄
● mkimage supports -O …
● If memory size is fixed in FDT, you’re lucky.
● Doesn’t know about BFS…
● Where’s the framebuffer info in the FDT? 🖳

– But, wait, there’s simple-framebuffer binding!
● So why nobody cares? 😁

● Let’s look at the global data…

https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/display/simple-framebuffer.txt


  

U-Boot

● typedef struct uboot_gd {
// those are the only few members that we can trust
// others depend on compile-time config
struct board_data *bd; // arch-dependent as well...
uint32 flags;
uint32 baudrate;

#ifdef __ARM__ // !???
uint32 have_console;
uint32 reloc_off;
uint32 env_addr;
uint32 env_valid;
uint32 fb_base; // <- THIS I WANT! But where’s WxH?

#endif
} uboot_gd;



  

U-Boot

● mkimage -O ==> set operating system to 'os'

● Nice, let’s add Haiku!
– But existing boards won’t support it anyway… 

● Ok, let’s just fake NetBSD,
– start_netbsd(struct board_info *bd, struct image_header *image, const char 

*consdev, const char *cmdline)

● Ok, let’s just boot as raw, 
– start_raw(int argc, const char **argv)

● Ok, let’s just fake Linux. But which one? 😅
– start_linux(int argc, int archnum, void *atags)

{ // newer U-Boot pass the FDT in atags
 return start_gen(0, NULL, NULL, atags); }



  

U-Boot TODO

● Separate firmware repository (  kallisti5)☑
● MMC image tool (  ☑ rune by kallisti5)
● Clean up loader gfx code…
● Assume FDT /chosen/framabuffer
● Write board-specific helper cmds to patch FDT

– We can link that to specific U-Boot builds…
● When we have the source

– Or patch FDT in haiku_loader

https://github.com/haiku/firmware
https://www.haiku-os.org/blog/kallisti5/2018-05-19_rune_-_haiku_images_on_arm/
https://github.com/haiku/rune


  

M68K (≥ 68030)

● Mostly for fun™
● Targets Atari Falcon & Amiga (with lots of RAM)

– DOS-like boot floppy with checksum variations
– Weird video modes, custom chips…

● Some hardware still produced
– Firebee (ColdFire Atari compatible)
– Apollo Vampire 68080 cards for Amiga & Atari

● TOS & AmigaDOS usable from haiku_loader 😎

http://firebee.org/fb-bin/index?&lng=EN
http://www.apollo-accelerators.com/


  

Demo



  

M68K (as of 2010)



  

Sparc, MIPS…

● Nothing to see here, move along
– (barely started, and removed)
– (but if you make it work, please send patches)



  

(U)EFI

● GPT support ☑
● Bulk of the work by JessicaH since 2014
● De-x86zation by kallisti5 for ARM support
● EFI doesn’t know about BFS…

– Manual copy of loader to the FAT
– Not yet automatically done in R1/beta1

https://www.haiku-os.org/guides/uefi_booting/


  

RISC-V

● 2018-05-02: elf: Add aarch64 and riscv defines
● 2018-11-04: build: Add riscv architecture
● 2018-12-05: Finally some stubs \o/
● Please send dev boards our way 😋



  

I want to help! Where do I start?

● www.haiku-os.org/ …/getting-started 
● cgit. …/docs/develop/kernel/ports 
● Pick your target…
● dev. …/SubmittingPatches !

https://www.haiku-os.org/development/getting-started
https://git.haiku-os.org/haiku/tree/docs/develop/kernel/ports
https://dev.haiku-os.org/wiki/CodingGuidelines/SubmittingPatches
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