The Software Developer's Guide to Open Source Hardware

Leon Anavi

Konsulko Group leon.anavi@konsulko.com leon@anavi.org FOSDEM 2019

Agenda

- Combining open source hardware with free and open source software
- Open source hardware certification
- Low-volume manufacturing
- Crowdfunding opportunities
- Community

Open Source Hardware

- Design of physical objects that is publicly available so that anyone can study, modify, distribute, make, and sell the design or hardware based on that design
- To be really open source hardware the project needs 4 main elements: hardware, software, documentation, branding

Benefits

Open source hardware is good for:

- Giving confidence that the design will be available if the original manufacturer stops production
- Keeping the prices low
- Enabling customizations and integration in 3rd party products
- Sharing knowledge, educating students and getting feedback and contributions from the community

Open Source Hardware Licenses

Popular viral licenses:

- GNU General Public License (GPL)
- Creative Commons Attribution-ShareAlike
- CERN Open Hardware License (OHL)
- TAPR Open Hardware License (OHL)
 Popular permissive licenses:
- FreeBSD
- MIT
- Solderpad Hardware Licence

Open Source Hardware Certification

Open Source Hardware Association(OSHWA):

- Maintains Certified Projects Directory
- Ensures that the definition of "open source hardware" used by a specific project matches the community definition of open source hardware
- Provides an unique ID for certified hardware based on the country code and a number, for example: BG000007
- Provides an unique logo for the certified ID
- https://certification.oshwa.org/

Who is Using Open Source Hardware?

- Arduino
- Olimex
- SparkFun
- Adafruit
- Intel
- Google
- IBM
- Prusa
- And a lot of other companies and individuals...

Software vs Hardware

- Hardware is expensive
- Often you can't built hardware at home
- Making hardware prototypes takes more time
- Soldering requires skills and practice
- Debugging hardware requires specific physical tools
- Fixing bugs requires a new version of the hardware
- Testing hardware can be dangerous

Philosophical questions

- Is it worth designing open source hardware with expensive proprietary software tools?
- Can you build a sustainable community if your contributors have to pay gazillions for software licenses to modify and contribute back to your open source hardware project?

Free and Open Source Design Software

Popular Electronic Design Automation (EDA):

- Fritzing
- gEDA
- KiCAD

Popular Computer-aided design (CAD):

- OpenSCAD
- QCAD
- FreeCAD
- Blender

KiCad

- Free & open source EDA software (GPLv3+)
- Cross platform (works on GNU/Linux distributions, MS Windows and Mac OS X)
- Integrated 3D viewer
- Up to 32 copper layers + 14 fixed-purpose technical layers
- Contributions from CERN developers
- Already adopted by the industry
- http://kicad-pcb.org/

Why am I using KiCad?

Because it is open source and recommended by:

My First Own KiCad Project from Scratch

- It all started with an add-on board for Raspberry Pi
- Thanks to Rangel Ivanov & other friends for helping me with KiCad

For details have a look at FOSDEM 2017: Making Your Own Open Source Raspberry Pi HAT https://archive.fosdem.org/2017/schedule/event/diy_pi_hat/

It Becomes Easy After Getting Used to KiCad and Open Source Hardware

Recommendations

- Comply with the minimum requirements of the PCB manufacturer for trace spaces, drills and angular rings
- Read the datasheets of all components carefully
- Keep in mind the complexity of the assembly process while designing the PCB
- Consider the design of the case simultaneously with the design of the PCB
- Submit often to version control system with a public repository to get early feedback from the community

PCB Prototyping

PCB printing services from:

- OSHPark (USA)
- Aisler (Germany)
- Other local European factories
- JLCPCB (China)
- PCBWAY (China)
- Seeed Studio (China)
- ALLPCB (China)
- Other Chinese factories

Epic Fails

Low Volume Manufacturing (1/3)

Price depends on PCB size

Several boards are grouped in a panel

Assembly could be more expensive than the PCB

Low Volume Manufacturing (2/3)

- Assembly could be more expensive than the PCB
- Handsoldering SMD (Surface Mount Devices) might be OK for a prototype but is extremely time consuming and not a reasonable option for low volume manufacturing
- Stencil, solder paste and a reflow oven is required for SMT (Surface Mount Technology)
- Pick and place machine might be too expensive for low volume manufacturing of PCB with just a few SMD

Low Volume Manufacturing (3/3)

- Planning low volume manufacturing from local suppliers avoids delays caused by import procedures and holidays in the country of origin of the components
- Local manufacturing allows better QA during the process
- Local manufacturing may be more expensive but cuts the costs for shipping

 Bonus: it is awesome to see your hometown on a PCB

Crowdfunding Opportunities

- Kickstarter
- IndieGoGo
- Crowd Supply
- GroupGets
- Other
- Tindie (marketplace for maker made products)

SenseTemp An accurate and flexible four-channel temperature sensor for instrumenting

electronics

SuperB An open, Bee-compatible ESP32 module for guickly and easily adding Wi-Fi and Bluetooth

ANAVI Thermometer An ESP8266-powered, open source, Wi-Fi dev board with temperature and humidity sensors

Community

- Community matters
- Keeping the hardware, the software and the documentation in public repositories allows people to contribute back
- Using popular tools and services such as Git and GitHub makes it easier to attract more contributors
- Excellent documentation is always an advantage
- Bloggers have the power to spread to word among the community and influence it
- People enjoy step by step tutorials in YouTube, Instructables, Hackster, hackaday.io, etc.

Recommendations

- Use de-facto industry standard version control system like Git and a popular service like GitHub helps to attract more contributors
- Provide quick feedback to contributors
- Be respectful and thankful for each contribution

Hardware Improvements

- GitHub pull requests with modifications of the KiCad sources are rare because it could be difficult to tests the change
- Often hardware recommendations are provided by the community and the author should implement them
- It is a good practice to add trailer with credit to the people involved in the modification, for example with trailers in the Git commit message

commit ec4060aa8f6bd9c3c78772545addae66212a6bf0 (HEAD -> master, orig A <mark>/master</mark>) Author: Leon Anavi <leon@anavi.org> Date: Fri Jul 20 16:41:54 2018 +0300</leon@anavi.org>
anavi-buttons.kicad_pcb: Wider GND
Extend the path that connects the GND fill zone.
Suggested-by: Lazar Hristov <lhristov@gmail.com> Signed-off-by: Leon Anavi <leon@anavi.org></leon@anavi.org></lhristov@gmail.com>

Hardware Modifications

esp01-i2c-little-board by Nicolas Vion https://github.com/zmoostik/esp01-i2c-little-board

Modified Infrared pHAT by Lazar Hristov https://github.com/lazarh/anavi-infrared

Conclusions

- Open source hardware is a viable business model already used by a lot of well-known companies in the industry
- Open source hardware certification by OSHWA is free and guarantees that the products are really open source
- High quality free and open source software tools for designing open source hardware are available
- Building and testing a hardware prototype is often more expensive and time consuming (compared to software)
- Community always matters

Thank you!

Useful links:

- https://www.oshwa.org/
- https://certification.oshwa.org/process.html
- http://kicad-pcb.org/
- https://oshpark.com/
- https://docs.oshpark.com/design-tools/kicad/generating-kicad-gerbers/
- https://github.com/AnaviTechnology/
- https://www.crowdsupply.com/
- https://www.tindie.com/

