
1

A low latency GPU engine based

reset mechanism for a more robust

UI experience

Carlos Santa

2

- Problem Statement

- What’s the limitation in the GPU driver

- Proposed Solution: What is Timeout Detection and Recovery (TDR)

- How low can the latency be?

- A word about preemption

- Status of TDR in upstream

- Q/A

Agenda:

3

- Looking at a specific stability problem affecting the UI experience under Intel

Architecture when running GFX/Video playback use cases (video streaming type of

app)

- The behavior was a frozen UI, followed by a black screen followed by system

reboot (of course after some random time interval (hours to long long hours)).

- Spent some time understanding the GFX architecture in Chrome OS as well as a

possible solution that could help here.

Problem statement: Stability and Robustness

4

Current limitation

GL / D3D

Compositor

Context

Video App

Context

GPU Driver

GPU H/W

1 crash/hang

3D Render

Engine

Media

Engine ??

Video Codec

Engine

GPU Process

(Server)

2 full gpu reset

1. If a 3D client app “hangs” the GPU then the GPU process may get killed followed

by a full GPU reset.

2. For a complex use case such as video decode many frames/objects

are currently in flight so killing the GPU Process and resetting the GPU causes

undesirables effects. We then realized…

Shared Memory

Compositor

Video App

Renderer Process

(Client)

5

- New feature for Intel GPUs (upstreaming is wip) that can increase both stability and

robustness by allowing applications to enable hang detections on individual batch

buffers.

- Timeout Detection and Recovery (TDR) allows for the different engines in the GPU to be reset

independently (as opposed to a full GPU reset).

- Generally speaking, the implementations introduces a new IRQ handler in the i915 driver as well

as two new gpu watchdog command instructions before and after the emitted batch buffer’s start

instruction in the GPU’s ring buffer.

Proposed solution: Timeout Detection & Recovery

6

TDR: Step by step

WD_TIMER_START

BB START

WD_TIMER_CANCEL

Media driver sets WD ∆t for BB Flushes BB

t t+n

Ring

Buffer

kernel
WD runs until a given time threshold ∆t or the

WD_TIMER_CANCEL is reached.

If the timer reaches the ∆t then an interrupt

is fired and is handled by the IRQ. A GPU hang is

detected!

If the BB completes before the ∆t and execution

reaches WD_TIMER_CANCEL then WD is

cancel and nothing happens.

∆t = threshold

WD = GPU watchdog

t = time interval

1 2

3
4

5

6

7

GPU Process

(Server)

GL / D3D

Compositor

Context

Video App

Context

Proposed solution:

GPU Driver

GPU H/W

3D Render

Engine

Media

Engine

Video Codec

Engine

2 3 media engine gpu reset

UMD Media

Driver

1

1. UMD Media Driver starts the watchdog timer after sending batch buffers

2. At some time later the media engine is detected to be in hung state after the watchdog timer has expired

3. The GPU driver resets only the affected media engine

4. Because the UMD Media driver knows when the faulty batch got submitted it could take actions during the

the time it take the media driver to come back from the reset.

8

- The whole mechanism works by an arbitrary threshold value that can be set from the

application through an ioctl.

- However, the threshold can’t be too low or else it can generate too many false

positives.

- Right now, we are setting the threshold value with respect to the screen resolution

(1080p=50ms, 4K=100ms, 8K=500ms and 16K=2000ms), however, we are still

evaluating all these values.

How low can the latency be?

9

A word about preemption

WD_TIMER_START

BB START

WD_TIMER_CANCEL

Media driver sets WD ∆t Flushes BB

t t+n

Ring

Buffer

kernel

What happens if the BB sequence gets

preempted before the WD timer gets canceled?

During preemption, the driver must cancel the

WD_TIMER_CANCEL command as part of the

preemption sequence.

What happens to the timer that was already

ticking?

∆t = threshold

WD = GPU watchdog

t = time interval

1 2

3

10

How a compositor could benefit?

Compositor Mesa 3D

EGL/OGL

KMS DRMKernel

Video client
Client

libVA API

VAAPI driver

libDRM

Client

1. A compositor is fundamentally

tasked to produce frames

2. In the past, by the time we

detected that the GPU was hung it

was too late for the compositor to

recover (screen freeze, green or

black screen or a system reboot).

3. A video client app can now

determine early on whether a “task”

has caused the Media Engine to

crash and if so flag to the compositor

to show the current frame while the

Media Engine comes back from the

reset.

3D Render

Engine

Media

Engine
Video Codec

1 2

11

Status of TDR in upstream:
Accepted in upstream Comments

TDR – Reset Engine Yes

TDR – with GuC WIP

TDR - Watchdog WIP

IGT – TDR Watchdog WIP

Prototype Comments

TDR - Watchdog Ubuntu OS w/ drm-tip iHD and i965 Media

Stacks

ffmpeg media decode Ubuntu OS w/ drm-tip validated

Video APK ARC++ Chromium OS – cros-4.14 validated

12

- All of this work is happening in upstream

- TDR kernel patches

- Code review: https://lists.freedesktop.org/archives/intel-gfx/2019-

January/185543.html

- i965 Media Driver in user space

- Code review at: https://github.com/intel/intel-vaapi-driver/pull/429

- I can be reached on IRC as csanta

work email: carlos.santa AT intel.com

How to get involved?

https://lists.freedesktop.org/archives/intel-gfx/2019-January/185543.html
https://github.com/intel/intel-vaapi-driver/pull/429

13

Questions or feedback?

