
Go 💖 MIDI
Exploration of Linux's System Interfaces

Tracks
0. Presentation Header
1. MIDI and SMF
2. Linux
3. Hardware
4. Demo
5. Conclusion

Track 1:
MIDI and SMF

Musical Instrument Digital Interface
● Protocol and Electrical standard for connecting musical instruments,

computers, and related audio devices
● Defined in 1983, continues to be in active use
● Baud rate: 31250
● Supports up to 16 channels multiplexed
● Commands to trigger notes, no audio data is transmitted

Live Messages
● Channel Messages

○ Voice (note on/off, key pressure, pitch bends, bank select)
○ Mode (silence, polyphonic, monophonic)

● System Messages
○ Real Time (clock, start/stop, reset)
○ Common (MIDI timing code, song select)
○ Exclusive (stream of bytes)

Standard MIDI Files
● Set of instructions for MIDI devices

○ Sequencers, DAW, video games

● Storages messages along with their position
● Versions

○ Single track
○ Multitrack synchronous
○ Multitrack asynchronous

● Sounds only as good as the hardware synthesizing

SMF Messages
● Meta Messages

○ Sequence and track names, copyrights, lyrics
○ Time signature, tempo, key

● Channel Messages
● System Common and Exclusive Messages

 BREAKING NEWS BREAKING NEWS BREAKING NEWS

● Draft announced January 2019
● Increased resolution (8-bit to 32-bit in many cases)
● Supports up to 256 channels
● Backwards compatible

MIDI 2.0

Track 2:
Linux

gokrazy
● Pure-Go Linux userland for applications

○ Small init written in Go
○ No C runtime

● gokr-packer CLI tool to build the distribution, including our Go applications

Syscall
● Directly make function calls into the kernel
● A lot of functionality is exposed!

golang.org/x/sys/unix
func Syscall(trap, a1, a2, a3 uintptr) (r1, r2 uintptr, err

syscall.Errno)

func Syscall6(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2

uintptr, err syscall.Errno)

func SyscallNoError(trap, a1, a2, a3 uintptr) (r1, r2 uintptr)

And a bunch of wrapping functions to deal with architecture differences

Memory Backed File
● Option 1: Create a temporary file on /tmp

○ Program or user might not have permissions to write to this directory
○ Directory isn't guaranteed to exist
○ Harder to track memory usage
○ Must remember to remove the file after use

Memory Backed File
● Option 2: Ask the Linux Kernel to create a file backed by memory

○ Kernel automatically clears the memory when all references to the file are closed

● func MemfdCreate(name string, flags int) (fd int, err error)
○ Create a file descriptor backed by memory

● func Ftruncate(fd int, length int64) (err error)
○ Truncate the file to the size of our data

● func Mmap(fd int, offset int64, length int, prot int, flags

int) (data []byte, err error)
○ Map the memory of the file into our memory space

ioctl
Interact with special devices

cmd := ethtool_cmd{cmd: 0x00000001} // ETHTOOL_GSET

dev := []byte{"eth0"}

ifr := ifreq{name: uintptr(unsafe.Pointer(&dev[0])), data: &cmd}

f, _ := unix.Socket(unix.AF_INET, unix.SOCK_STREAM, 0)

_, _, errno := syscall.Syscall(unix.SYS_IOCTL, uintptr(f.Fd()),

 uintptr(unix.SIOCETHTOOL), uintptr(unsafe.Pointer(&ifr)))

Sockets
Similar to ioctl, passing structures between Go and Linux

info := iptGetInfo{name: []byte{"nat"}}

f, _ := unix.Socket(unix.AF_INET, unix.SOCK_RAW, unix.IPPROTO_RAW)

_, _, err := syscall.Syscall6(unix.SYS_GETSOCKOPT,

 uintptr(f.Fd()), uintptr(unix.IPPROTO_IP), uintptr(64),

 uintptr(unsafe.Pointer(&info)),

 unsafe.Sizeof(iptGetInfo), 0)

fmt.Printf("table has %d entries.\n", info.numEntries)

Problems
● The previous ways of interacting with the kernel rely on passing memory.
● Fine for small values, but annoying for structs.

Linux Netlink
● An IPC mechanism enabling communication between kernel and userspace

(or between multiple userspace programs)
● Netlink communications never leave the local host
● Body of Netlink messages are encoded as list of attributes (Length, Type,

Value)
○ Attributes may be nested in Values
○ Value is 4-byte aligned

● Bus for each family of messages

github.com/mdlayher/netlink
● Attribute Encoder and Decoders
● Creates and manages underlying sockets
● Manages sequence IDs for you :)

Generic Netlink
● Make it easier for kernel modules to support Netlink, a generic bus was

defined, with its own families.
● Attributes of a Generic Netlink family

○ ID (change with every reboot, must look up)
○ Name
○ Version
○ Multicast group

github.com/mdlayher/genetlink
● Helps creates valid Netlink messages for the Generic Netlink family

Getting WiFI interfaces
c, err := genetlink.Dial(nil)

family, err := c.GetFamily(name)

req := genetlink.Message{

Header: genetlink.Header{

Command: nl80211CommandGetInterface,

Version: family.Version,

},

}

flags := netlink.HeaderFlagsRequest | netlink.HeaderFlagsDump

msgs, err := c.Execute(req, family.ID, flags)

Parsing Interface fields
func (ifi *Interface) parseAttributes(attrs []netlink.Attribute)

error {

for _, a := range attrs {

switch a.Type {

case nl80211.AttrIfindex:

ifi.Index = int(nlenc.Uint32(a.Data))

case nl80211.AttrIfname:

ifi.Name = nlenc.String(a.Data)

}

return nil

}

Aside to Desktop Linux
● A userspace daemon would listen to these events

○ Apply policies
○ Create symlinks on devtmpfs
○ Maintain device metadata and emit enriched events

● systemd, eudev, vdev
○ Maintain /run directories of metadata
○ Emit enriched events to dbus

● (optionally) Another daemon farther process these events
○ Udisks2 listens on dbus, and exposes RPCs specifically for working with disks
○ Udevil automatically mounts disks by listening to udev events

uevent and kobject
● Linux creates and manages kobjects that tracks the addition, modification,

and removal of devices
● Changes to the kobject result in uevents passed from the kernel to userspace

over a netlink family
● The values for the last uevent are exposed by Linux as a file in sysfs

github.com/mdlayher/kobject
c, _ := kobject.New()

for {

event, _ := c.Receive()

// process event

}

Coldplug
● uevent has no buffering, only new events
● Can process existing events by walking sysfs

○ filepath.Walk("/sys", filepath.WalkFunc)
○ Read "uevent" file
○ Parse key-value pair from each line

func ParseEvent(f io.Reader) map[string]string {

event := make(map[string]string, 0)

buf := bufio.NewScanner(f)

for buf.Scan() {

fields := strings.SplitN(buf.Text(), "=", 2)

if len(fields) < 2 {

return event

}

event[fields[0]] = fields[1]

}

return event

}

Track 3:
Hardware

Back in 90s
● Roland made a "music tutor" that played back MIDI from 3.5" floppies

In 2019

Building My Own
● Raspberry Pi 3+
● MIDI synthesizer attached to serial port
● Floppy drive over USB
● Player written in Go

Why Go?
JBD says (https://github.com/rakyll/go-hardware):

● "Out-of-the-box cross compilation"
● "Built-in concurrency primitives"
● "Go programs compile to static binaries"
● "Go is efficient, fast and has low memory footprint"
● "Code reuse"

I says:

● "Not C"
● "Out of the box toolchain"

MIDI Synthesizer
● Many classic MIDI synths are available in WaveBlaster-compatible

daughterboards
○ Creative WaveBlaster
○ Yamaha DB60XG
○ Roland SCB-55
○ Korg Ai20

● A few modern synthesizers are available
○ Serdaco Dreamblaster X2
○ Serdaco Dreamblaster S2

WaveBlaster Hat

Track 4:
Demo

Demo gods got me :(

Track 5:
Conclusion

We're Hiring

Acknowledgements
● Matt Layher (https://mdlayher.com/)

○ Many libraries for working with Netlink and system administration

● Michael Stapelberg (https://michael.stapelberg.de/)
○ Main developer on gokrazy

● Chiel Kersten (http://members.home.nl/c.kersten/)
○ Large catalog of WaveBlaster-compatible daughterboards

https://mdlayher.com/
https://michael.stapelberg.de/
http://members.home.nl/c.kersten/

Thanks!
● Blog: https://terinstock.com
● Code: https://git.terinstock.com
● Twitter: @terinjokes

https://terinstock.com
https://git.terinstock.com
https://twitter.com/terinjokes

