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What is Navit?

● Multi-platform offline routing software
● Open source since 10+ years
● Usage of free OpenStreetMap data
● Advantages for end users:

● Low system requirements (tested on 64MB RAM, 
400MHz ARMv5)

● Many supported platforms and devices
● Highly customizable: 

● map layout
● on-screen display
● routing profiles

● Several text-to-speech backends
● Translations in more than 50 languages



  

● Laptop
● Linux
● Windows
● MacOS

● Handheld
● Android
● Sailfish OS
● WinCE

● Embedded
● TomTom
● Raspberry Pi

Supported Platforms
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Build infrastructure

Challenges for Open Source projects 
– Most contributors are interested in the project, 

not its infrastructure
– You need resources to host the services
– You often need money to pay for resources



  

Build infrastructure

There is hope!
Several CI systems offer a free tier
– compilation tests. (code base broken?)
– Run platform specific tests. (build for platform 

broken?) 
– Run static code analysis. (no new issues?)
– Chain all the things together



  

CI – Build test pipeline

Parallel Jobs: 

Branch-specific workflows, e.g. only rebuild 
our doxygen documentation from `trunk`:



  

CI – Build tests pipeline

Advanced features workflow
● e.g. fan out/fan in.
● Useful for a job depending on another jobs earlier in the chain
● Location of build failure easily noticeable



  

●Pipeline used to generate artifacts
● e.g. generation of an image to installation of navit on 

Raspberry Pi

Build artifacts

● Build jobs focussed on relevant artifacts:
● .apk for Android
● .exe for Windows builds
● system images for raspberry and Tomtom
● .rpm for Sailfish builds

● Same process used for:
● Building
● Signing
● Automatically uploading
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Continuous Integration

● Continuous Integration on circleci
● Integrated with Github
● Benefits: 

● direct testing of pull requests 
● Reduction of scope of branches to one specific thing
● easier reviewing and merging



  

Outline

● Introduction 
● Build-Infrastructure 
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work



  

Device Farm

Challenges for OpenSource smartphone app 
projects 
– Large number of supported mobile devices 

demand extensive testing on many different 
platforms

– Android has a large version fragmentation
– iOS requires Mac-Computers which are not 

always available



  

Device Farm

Several companies systems offer a device 
farms
– Online interface to a larger available set of 

mobile phones for device and platform specific 
testing. (build for platform or device broken?)

– Run GUI-based test (usability same on different 
devices and platform?)

– Run-time performance evaluation on different 
devices



  

Device Farm

Available device farms:
– Amazon Device Farm
– Google Test Lab
– Xamarin Test Cloud
– Kobiton
– Experitest
– Sauce Labs
– OpenSTF
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Appium  

● GUI testing framework for Android, iOS,
   Windows Mobile and Web based apps
● Partially based on Selenium and Node.js
● Clients for different programming languages,    
   e.g. Python, Java, PHP, Python, Ruby or C#
● Released under Apache License
● Supported on AWS Device Farm
● Available at: http://appium.io/

http://appium.io/


  

Appium  

● Initial implementation on AWS Device Farm
   and local device
● First simple tests with startup and initialization
  of app, e.g. downloading of map and selection  
  of text-to-speech-system



  

Appium 

Example Source code:

self.driver.start_activity('org.navitproject.navit', 
'org.navitproject.navit.Navit')
el = self.driver.find_element_by_android_uiautomator('new  
       UiSelector().textContains("Google")')
el.click()
el = self.driver.find_element_by_android_uiautomator('new 
       UiSelector().textContains("Europe")')
action = TouchAction(self.driver)
action.press(el).release().perform()
while True: 
     sleep(5)
     try:
     el = self.driver.find_element_by_android_uiautomator('new 

              UiSelector().textContains("downloading")')
     except Exception as e:
              break



  

Appium 

Example Video:

Video Demo

namnlos.mp4
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Conclusion and Future 
Work
● Android build on circleci
● Distributed via Google-Play and F-Droid
● Current testing during compile phase
● GUI testing using Appium
● Initial tests on AWS Device Farm
● Work towards tests on own device farm

You have reached your destination in one slide.



  

Contacts

Homepage: www.navit-project.org
Forum: forum.navit-project.org
Wiki: wiki.navit-project.org
Bugtracker: trac.navit-project.org
IRC: #navit on freenode.net
Facebook: www.facebook.com/NavitProject
Twitter: www.twitter.com/NavitProject

You have reached your destination now.

http://www.navit-project.org/
http://forum.navit-project.org/
http://wiki.navit-project.org/
http://trac.navit-project.org/
http://www.facebook.com/NavitProject
http://www.twitter.com/NavitProject

