

Continuous Integration to
compile and test Navit

Patrick Höhn
Navit Project

hoehnp@gmx.de

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

What is Navit?

● Multi-platform offline routing software
● Open source since 10+ years
● Usage of free OpenStreetMap data
● Advantages for end users:

● Low system requirements (tested on 64MB RAM,
400MHz ARMv5)

● Many supported platforms and devices
● Highly customizable:

● map layout
● on-screen display
● routing profiles

● Several text-to-speech backends
● Translations in more than 50 languages

● Laptop
● Linux
● Windows
● MacOS

● Handheld
● Android
● Sailfish OS
● WinCE

● Embedded
● TomTom
● Raspberry Pi

Supported Platforms

On the Road

Current street

Current speed

Zoom in

Compass

Distance
Arrival time

Remaining km
Route speed

Zoom out

GPS status

Speed limit

Turn icon
Next turn

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Build infrastructure

Challenges for Open Source projects
– Most contributors are interested in the project,

not its infrastructure
– You need resources to host the services
– You often need money to pay for resources

Build infrastructure

There is hope!
Several CI systems offer a free tier
– compilation tests. (code base broken?)
– Run platform specific tests. (build for platform

broken?)
– Run static code analysis. (no new issues?)
– Chain all the things together

CI – Build test pipeline

Parallel Jobs:

Branch-specific workflows, e.g. only rebuild
our doxygen documentation from `trunk`:

CI – Build tests pipeline

Advanced features workflow
● e.g. fan out/fan in.
● Useful for a job depending on another jobs earlier in the chain
● Location of build failure easily noticeable

●Pipeline used to generate artifacts
● e.g. generation of an image to installation of navit on

Raspberry Pi

Build artifacts

● Build jobs focussed on relevant artifacts:
● .apk for Android
● .exe for Windows builds
● system images for raspberry and Tomtom
● .rpm for Sailfish builds

● Same process used for:
● Building
● Signing
● Automatically uploading

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Continuous Integration

● Continuous Integration on circleci
● Integrated with Github
● Benefits:

● direct testing of pull requests
● Reduction of scope of branches to one specific thing
● easier reviewing and merging

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Device Farm

Challenges for OpenSource smartphone app
projects
– Large number of supported mobile devices

demand extensive testing on many different
platforms

– Android has a large version fragmentation
– iOS requires Mac-Computers which are not

always available

Device Farm

Several companies systems offer a device
farms
– Online interface to a larger available set of

mobile phones for device and platform specific
testing. (build for platform or device broken?)

– Run GUI-based test (usability same on different
devices and platform?)

– Run-time performance evaluation on different
devices

Device Farm

Available device farms:
– Amazon Device Farm
– Google Test Lab
– Xamarin Test Cloud
– Kobiton
– Experitest
– Sauce Labs
– OpenSTF

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Appium

● GUI testing framework for Android, iOS,
 Windows Mobile and Web based apps
● Partially based on Selenium and Node.js
● Clients for different programming languages,
 e.g. Python, Java, PHP, Python, Ruby or C#
● Released under Apache License
● Supported on AWS Device Farm
● Available at: http://appium.io/

http://appium.io/

Appium

● Initial implementation on AWS Device Farm
 and local device
● First simple tests with startup and initialization
 of app, e.g. downloading of map and selection
 of text-to-speech-system

Appium

Example Source code:

self.driver.start_activity('org.navitproject.navit',
'org.navitproject.navit.Navit')
el = self.driver.find_element_by_android_uiautomator('new
 UiSelector().textContains("Google")')
el.click()
el = self.driver.find_element_by_android_uiautomator('new
 UiSelector().textContains("Europe")')
action = TouchAction(self.driver)
action.press(el).release().perform()
while True:
 sleep(5)
 try:
 el = self.driver.find_element_by_android_uiautomator('new

 UiSelector().textContains("downloading")')
 except Exception as e:
 break

Appium

Example Video:

Video Demo

namnlos.mp4

Outline

● Introduction
● Build-Infrastructure
● Continuous Integration
● Device Farm
● Appium
● Conclusion and Future Work

Conclusion and Future
Work
● Android build on circleci
● Distributed via Google-Play and F-Droid
● Current testing during compile phase
● GUI testing using Appium
● Initial tests on AWS Device Farm
● Work towards tests on own device farm

You have reached your destination in one slide.

Contacts

Homepage: www.navit-project.org
Forum: forum.navit-project.org
Wiki: wiki.navit-project.org
Bugtracker: trac.navit-project.org
IRC: #navit on freenode.net
Facebook: www.facebook.com/NavitProject
Twitter: www.twitter.com/NavitProject

You have reached your destination now.

http://www.navit-project.org/
http://forum.navit-project.org/
http://wiki.navit-project.org/
http://trac.navit-project.org/
http://www.facebook.com/NavitProject
http://www.twitter.com/NavitProject

