Quantum Computing
and the Forest SDK

Robert Smith
2 February 2019

rigetti

a quick poll

Rigetti Computing Proprietary and Confidential

Rigetti Computing, in a nutshell

e Build universal, gate-based hybrid
classical/quantum computers
o Quantum computers are not more
powerful than classical ones, yet
o .. butthey can do real, interesting
computations
e Full-stack company
o allin-house: design — manufacturing — ... — applications development
e Wide range of papers published
e Flagship product: Quantum Cloud Services

Quantum Cloud Services

e Fastest quantum programming environment available to the public

e SW+HW-+Infra innovations give 3OX speed-up over HTTP services

o 2 hours of computation becomes 4 minutes
e Personal Quantum Machine Image (QMI) with SSH
access, preloaded with a full suite of advanced tools:

—_

Compiler
Simulator
Python AP
Optional libraries

— Forest SDK

O O O O

Open source @ Rigetti

e 3years ago, released an open standard for Quil
o A portable guantum instruction language for hybrid computation LLLL

o Language-independent: Python, OCaml, Lisp, JavaScript, ... (< r;";\;*f” A’
e Since then, Rigetti has released a handful of OSS
pyQuil MAGICL rpcq
forest-benchmarking ogaml grove
ALEXA cmu-infix & more

Many contributions back to OSS projects: CAD tools, testing libs, etc.

The Forest SDK

Program Construction & API

pyQuil

Rigetti Computing Proprietary and Confidential

The Forest SDK: today’s talk

Applications

grove forest-benchmarking yourapp?

Program Construction & API

pyQuil

Quantum RPC Framework

rpcq

Simulator

qgvm PyQVM

Compiler
quilc

Quantum Computer Execution Stack

The Rigetti Quantum Virtual Machine: gvm

Extrlemely high-performance: Eats all available CPU cores and RAM if
you let it

Can execute the entire Quil language

Supports lots of execution modes
o Standard & stochastic pure-state evolution (latter with Kraus operators)
o Full density matrix evolution
o Path integral formulation: calculate T amplitude with linear memory

Simulates perfect and imperfect quantum computers

Includes a compiler to translate Quil into machine code
o Screaming fast execution, outperforms many simulators by 2x

demo

./qvm --verbose --benchmark
./qvm --verbose --benchmark --compile

The Rigetti optimizing Quil compiler: quilc

e The only general purpose, fully automatic, optimizing quantum compiler
e Built with portability in mind

o Can compile to user-specified quantum architectures S
e Can compile any unitary gate | o |

(2g, 3q, 4q, ... doesn't matter)
e Has lots of special knowledge to do quantum (P T
equivalents of: \
o register allocation :
o peephole optimization e R

o flow analysis and optimization -~ |
o optimal compilation rigett

One of the most amazing pieces of software I've worked on in my career.

demo

./quilc
cat bernstein-vazirani.quil | ./quilc -Pd

Fully automatic compilation is good!

As if it were the 1950s, some software firms suggest we should be:
o hand compiling quantum programs

o have our programs always be aware of the target architecture
m which changes every 6 months

o writing un-portable code

o .. because otherwise it “won't be appropriate” for NISQ machines
Computers are fast; what problems they can solve may surprise you
If people can write C for microcontrollers, then they can write portable
Quil for quantum computers

quilc is a good & improving demonstration of that

demo

cat bernstein-vazirani.quil | ./quilc -Pd --verbose

Rigetti Computing Proprietary a

What does a compiler target look like?

e Generally a graph of qubits

e FEach qubit supports a collection of single-qubit gates
o Could be static or parametric
o eg.,RX(pi/2),RZ(%theta)
e FEach qubit-pair supports a collection of two-qubit gates
o e.g., CZ CNOT, CPHASE (%theta)
e [Each qubit-{triplet, quadruplet, ...} supports
{3, 4, ..}-qubit gates
o Theion trap folks go nuts with these,
e.g., Mglmer-Sgrensen gate

Different qubits may be tuned for different operations! ‘¢ -

quilc can compile for this architecture

Try hand-compiling a GHZ state on a
quantum computer with this architecture!

For FOSDEM, we ported quilc...

..to Google’s Bristlecone
architecture (72 qubits)

..toIBM’s ibmqgx5

architecture (16 qubits)
Any program written in Quil in
whatever gate set will compile to
Rigetti's, Google's, and IBM's
architectures portably

o And quilc optimizes for them
Can work on the full chip or any

subgraph of it
The only compiler that can do so?

demo

cat molmer.quil | ./quilc -Pd --isa 8Q

cat molmer.quil | ./quilc -Pd --isa bristlecone
cat molmer.quil | ./quilc -Pd --isa ibmgx5
cat molmer.quil | ./quilc -Pd --isa bristlecone --enable-state-prep-reductions

Rigetti Computing Proprietary and Confidential

gvm & quilc are free to download

Free downloadable installers for Linux, macQOS,
and WindowsP®
o Comes with a EULA
e Open-source alternative to qvm: PyQVM
o Just released; part of pyQuil
o FOSS license: Apache 2.0
o Much slower for lots of qubits, doesn't come with
all the bells and whistles
e No real alternative to quilc
o Follow folk advice and hand-compile?

Split open/closed source = Good for startups

Pros of Open Source

Open source allows us to reap
the rewards of sharing the parts
that users mostly use so that
the customer experience can be
improved

Using RPC and creating good
APIs allows anybody to slot in
their own open source variants

Languages (like Quil) and APIs
are best fostered as a part of an
Open source community

Pros of Closed Source

Closed source programmer tools
allow us to innovate, sell, make
money, license, and write EULAS

Can't afford to “give everything for
free” unlike the multi-billion dollar
giants with tens or hundreds of
thousands of employees

Relying on the community for the
most important tools is a
haphazard bet. Otherwise Linux
would be the #1 desktop OS

just kidding

rigetti

github.com/rigetti/qvm
github.com/rigetti/quilc

Apache 2.0 - AGPL

Rigetti Computing Proprietary and Confidential

gvm & quilc are written in Common Lisp

e Many innovations couldn’t have happened without it
o Time & money budget aren't infinite at a startup
o Developing in Lisp is snappy

e Nobody has figured out expressive syntax for quantum computing
o Lispis great—even optimized—for metasyntactic experiments

e Debugging a compiler in Lisp with Emacs+SLIME is much nicer than in

Python or C++

o Optimizing compilers are very difficult to debug

e Ourteam primarily consists of first-time Lisp programmers
o New employees are always productive in just a few days

A book about Lisp for
programmers
Practical Common Lisp
free ebook online

Practical

Common Lisp

Peter Seibel

Apress*

http://www.gigamonkeys.com/book/

|Beer)+|Y0u>/\/§ Challenge

The first 3 people to...

solve an issue - fix a bug - make a contribution

..will get a beer on me.

S| 1 ™41
robert@rigetti.com
github.com/rigetti/qvm |4
github.com/rigetti/quilc g8
rigetti.com/community f°%

| 4 -y $ By 1 S Y

