
Han Lee, Intel Corporation

han.lee@intel.com

2

Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and other Intel product and solution names in this presentation are trademarks of Intel

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Domain Example

Image processing Color extraction

High performance computing (HPC) Matrix multiplication

Data processing Hamming code

Text processing UTF-8 conversion

Data structures Bit array

Machine learning Classification

3

What Do These Have in Common?

For performance sensitive code, consider using
Intel® hardware intrinsics

4

Objectives

 (Very brief) Intro to SIMD

 Design Motivation

 Hardware Intrinsics

 Call to Action

Perform same operation on multiple data using a single instruction

 Intel Advanced Vector Extensions 2 (Intel® AVX2) supports 256-bit SIMD instructions

– Add eight 32-bit integers using one vpaddd instruction

5

Single Instruction, Multiple Data (SIMD)

SRC1 X7 X6 X5 X4 X3 X2 X1 X0

SRC2 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

DEST X7 + Y7 X6 + Y6 X5 + Y5 X4 + Y4 X3 + Y3 X2 + Y2 X1 + Y1 X0 + Y0

YMM1

YMM2

YMM0

VPADDD YMM0, YMM1, YMM2

X7 X6 X5 X4 X3 X2 X1 X0

+ + + + + + + +

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

= = = = = = = =

X7 + Y7 X6 + Y6 X5 + Y5 X4 + Y4 X3 + Y3 X2 + Y2 X1 + Y1 X0 + Y0

8x ADD R32, R32

C# abstraction is System.Numerics.Vector*

 System.Numerics.Vector<T>

– On Intel AVX2 system, Vector<int>.Count is 8

– On Intel Streaming SIMD Extensions 2 (Intel SSE2) system, Vector<int>.Count is 4

6

Single Instruction, Multiple Data (SIMD)

Vector<int> v = New Vector<int>(0, 1, 2, 3, 4, 5, 6, 7)

 + New Vector<int>(0, 2, 4, 6, 8, 10, 12, 14)

v 21 18 15 12 9 6 3 0

7

Why?

*https://github.com/dotnet/corefx/issues/1168, https://github.com/dotnet/corefx/issues/2209, https://github.com/dotnet/corefx/issues/2025, https://github.com/dotnet/coreclr/issues/916

8

Hardware Intrinsics (a.k.a. Intrinsic functions /
Platform Dependent Intrinsics)

Special functions that directly map to hardware instructions

 Useful when

– Algorithms can better be mapped to underlying hardware

– Maximum control over code generation is desired

 Mainstream C/C++ compilers have intrinsic functions

– Field tested and proven to be useful

– Provides design guidelines

 Both SIMD and non-SIMD

9

Intel Hardware Intrinsics

 APIs originally designed and proposed by Intel

 Major enhancements with the help of .NET Core community and Microsoft

 Implementation by Intel, Microsoft and .NET Core community

 Namespace System.Runtime.Intrinsics contains platform-agnostic types & functions

– E.g., Vector256<int>, Vector256<int>.GetLower()

 New namespace System.Runtime.Intrinsics.X86 contains 15 top-level classes
corresponding to different Instruction Set Architectures (ISAs)

– AES, AVX, AVX2, BMI1, BMI2, FMA, LZCNT, PCLMULQDQ, POPCNT, SSE, SSE2, SSE3, SSE4.1,
SSE4.2, and SSSE3

 Available as an experimental features since .NET Core 2.1

 Available in .NET Core 3.0 Preview

10

Intel Hardware Intrinsics Design

 ISA class contains IsSupported boolean property to check hardware support

 ISA class contains intrinsic methods corresponding to underlying instructions

 Methods closely mirror C/C++ intrinsic function

 Majority of Intel hardware intrinsics operate over Vector128/256<T>

 Unsafe methods for operating over pointers

public static Vector256<int> Add(Vector256<int> left, Vector256<int> right)

public static unsafe Vector256<sbyte> LoadVector256(sbyte* address)

/// <summary>
/// int _mm_popcnt_u32 (unsigned int a)
/// POPCNT reg, reg/m32
/// </summary>
public static uint PopCount(uint value);

11

Demo:
Counting Set Bits

12

using System.Runtime.Intrinsics.X86;
using System.Runtime.Intrinsics;

static int[] Func(int[] data)
{

if (Avx2.IsSupported)
{

// AVX2 implementation
}
else if (Sse.IsSupported)
{

// SSE implementation
}
else
{

// Software scalar implementation
}

}

Using Intel Hardware Intrinsics in .NET Core

Import the namespace to use Intel HW intrinsic

Import the namespace to use Vector128/256<T>
as needed

Check hardware ISA support before using any
HW intrinsic

The checks will be optimized away by the
Just-In-Time compiler

NOTE: Calling HW intrinsic on
unsupported hardware will result in
System.PlatformNotSupportedException

13

SOA-Based Ray Tracer

14

How to Vectorize a Ray-tracer?

Ray-tracer based on 3D vector computation

 Most of the underlying structures can be abstracted to 3D vectors

– Position/direction (x, y, z) in 3D space, color (R, G, B)

Vectorize the underlying 3D vector computation

 AoS (Array of Structure)

 SoA (Structure of Array)

15

AoS vectorization

x1 y1 z1 x2 y2 z2

x = x1 + x2

y = y1 + y2

z = z1 + z2

+

Example: Add 3D vectors of float on AVX-capable machine

x1 y1 z1 - x2 y2 z2 -+

XMM1 XMM2

vaddps xmm, xmm1, xmm2

Scalar AoS

Cannot leverage wider SIMD architecture!

16

SoA vectorization

Example: Add 3D vectors of float on AVX-capable machine

x1 y1 z1 - x2 y2 z2 -+

XMM1 XMM2

vaddps xmm, xmm1, xmm2

AoS

X1

X12

X13

X14

X15

X16

X17

X18

X2

X22

X23

X24

X25

X26

X27

X28

+y1

y12

y13

y14

y15

y16

y17

y18

z1

z12

z13

z14

z15

z16

z17

z18

y2

y22

y23

y24

y25

y26

y27

y28

z2

z22

z23

z24

z25

z26

z27

z28

SoA

vaddps ymm, ymm1, ymm4
vaddps ymm, ymm2, ymm5
vaddps ymm, ymm3, ymm6

YMM1 YMM2 YMM3 YMM4 YMM5 YMM6class VectorPacket256
{

public Vector256<float> Xs;
public Vector256<float> Ys;
public Vector256<float> Zs;

}

17

Demo:
SOA-Based Ray Tracer Performance

18

Intel Hardware Intrinsics in Use

 CPU math operations in ML.NET

 SoA implementation of C# Raytracer

 Bit operations

 Matrix4x4 operations

 BLAKE2 hashing

 Your application!

*The figure shown above is from Microsoft blog on ML.NET

https://blogs.msdn.microsoft.com/dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios
https://github.com/dotnet/coreclr/pull/18839
https://github.com/dotnet/corefx/pull/26190
https://github.com/dotnet/corefx/pull/31779
https://github.com/saucecontrol/Blake2Fast

19

Turbocharge your applications with
Intel® hardware Intrinsics
in .NET Core 3.0

20

Accelerate Your Applications

 Understand your bottlenecks

– Intel VTune™ Amplifier is a great tool for profiling .NET Core application

 Use existing wealth of knowledge available on hardware intrinsics

– Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

– How-to guides: https://software.intel.com/en-us/articles/how-to-use-intrinsics

 Explore existing solutions in C/C++

– E.g., “Fast conversion from UTF-8 with C++, DFAs, and SSE intrinsics”
(https://github.com/BobSteagall/CppCon2018)

 Optimize your application & re-measure

 Contribute to .NET Core and hardware intrinsics

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/articles/how-to-use-intrinsics
https://github.com/BobSteagall/CppCon2018

22

Intrinsic Programming Tips

 Developers are responsible for checking hardware support

– Different from higher-level SIMD APIs where software fallback is provided

 Test your application with different ISA levels

– Use environment variables: e.g., COMPlus_EnableAVX

 Instruction encoding issues are handled automatically

– No need to worry about AVX/SSE transitions

– Best encoding by the JIT

 Use using static for concise syntax

