INTEL” HARDWARE INTRINSICS IN .NET
CORE

Han Lee, Intel Corporation

Notices and Disclaimers

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request. No product or component can be absolutely secure.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, and other Intel product and solution names in this presentation are trademarks of Intel

*Other names and brands may be claimed as the property of others

intel‘ . p)

What Do These Have in Common?

Image processing Color extraction
High performance computing (HPC) Matrix multiplication
Data processing Hamming code
Text processing UTF-8 conversion
Data structures Bit array
Machine learning Classification

For performance sensitive code, consider using
Intel® hardware intrinsics

Objectives

(Very brief) Intro to SIMD

Design Motivation

Hardware Intrinsics

Call to Action

Single Instruction, Multiple Data (SIMD)

Perform same operation on multiple data using a single instruction

= Intel Advanced Vector Extensions 2 (Intel® AVX2) supports 256-bit SIMD instructions
— Add eight 32-bit integers using one vpaddd instruction

| x7 || x6 || x5 || xa || x3 || x2 || xx || xo |
+ + + + + + + +

(v v v [[vw]w]|v] v]
11 1 I 1 1l 1 1 1

[x7+7][x6 + Y6 | [x5 + Y5] x4 + va |[x3 + v3][x2 + 2] [x1 +v1][x0 + YO]

8x ADD R32, R32

YMM1
A

seer | x7 [x6 [xs | xa | x3 | x2 | x1 | xo
YMM2

A
[|

YMMO

A
[|

VPADDD YMMO, YMM1, YMM2

intel' ~ 5

Single Instruction, Multiple Data (SIMD)

C# abstraction is System.Numerics.Vector*

= System.Numerics.Vector<T>
— On Intel AVX2 system, Vector<int>.Count is 8
— On Intel Streaming SIMD Extensions 2 (Intel SSE2) system, Vector<int>.Count is 4

Vector<int> v = New Vector<int>(e, 1, 2, 3, 4, 5, 6, 7)
+ New Vector<int>(®@, 2, 4, 6, 8, 10, 12, 14)

[

Why?

Code @ Issues 2,681 Pull requests 64 £

Vector Shuffling Operations 1
[__ [V T SN

./ dotnet / corefx

Adar 10 2N4E

de (D Issues 2,665 Pull requests 68 Projects 1 Wiki

Support for SSE4 intrinsics by RyuJIT

[CEELCIEEN redknightlois opened this issue on Jun 30, 201 omment
' redknightlois commented on Jun 30, 2015

N/

-~

Support for many of the interesting instructions like popcnt (technically SSE4a) cou
addition and prove to be useful to avoid using unmanaged code In certain perform

applications

Many (technically all) of the operations can be emulated in CPU when not available
optimizations for the target platform or even have the ability with specially crafted
optimizations, That would allow to even switch to an entirely different algorithm wi

(if properly done at the jitting phase)

© watch~> 1,569 W Star 15,513

- dotnet / corefx

Code Q@ Issues 2,681 Pull requests 64 Projects 1 Wiki Insights

DeflateStream's crc32 calculation consuming up to 50% of
GZipStream write time

toub opened this issu

e on Jun 12, 2015 - 7 comments

© watch~ 1,569

nsights

ub commented on Jun 12, 2015 Member Assignees
ne igne
a GZipStream is spending the majority of its execution time in zlib's deflate implementation, but
der is mostlv spent in a crc32 calculation. anvwhere from 0 to 50% denendina on how 1 ahale ’
Il dotnet / coreclr Owatch~ | 1044 | Hstar | 1075 |
|
Code Q@ Issues 1,949 Pull requests 110 Projects 8 Wiki Insights -

Please provide APl and intrinsics to unmanaged memory
operations (volatile and atomic operations) to be on parity
with managed memory operations

zpodlovics opened this issue on May 3, 2015 - 7 comments

B

J

*https://github.com/dotnet/corefx/issues/1168, https://github.com/dotnet/corefx/issues/2209, https://github.com/dotnet/corefx/issues/2025, https://github.com/dotnet/coreclr/issues/916

Hardware Intrinsics (a.k.a. Intrinsic functions /
Platform Dependent Intrinsics)

Special functions that directly map to hardware instructions

» Useful when
— Algorithms can better be mapped to underlying hardware

— Maximum control over code generation is desired

= Mainstream C/C++ compilers have intrinsic functions

— Field tested and proven to be useful

— Provides design guidelines

= Both SIMD and non-SIMD

Intel Hardware Intrinsics

APIs originally designed and proposed by Intel
Major enhancements with the help of .NET Core community and Microsoft
Implementation by Intel, Microsoft and .NET Core community

Namespace System.Runtime.Intrinsics contains platform-agnostic types & functions
— E.g., Vector256<int>, Vector256<int>.GetLower()

New namespace System.Runtime.Intrinsics.X86 contains 15 top-level classes
corresponding to different Instruction Set Architectures (ISAs)

— AES, AVX, AVX2, BMI1, BMI2, FMA, LZCNT, PCLMULQDQ, POPCNT, SSE, SSE2, SSE3, SSE4.1,
SSE4.2, and SSSE3

Available as an experimental features since .NET Core 2.1

Available in .NET Core 3.0 Preview

Intel Hardware Intrinsics Design

= |SA class contains IsSupported boolean property to check hardware support

= |SA class contains intrinsic methods corresponding to underlying instructions

= Methods closely mirror C/C++ intrinsic function

/// <summary>
/// int _mm_popcnt _u32 (unsigned int a)
/// POPCNT reg, reg/m32

/// </summary>
public static uint PopCount(uint value);

= Majority of Intel hardware intrinsics operate over Vector128/256<T>
public static Vector256<int> Add(Vector256<int> left, Vector256<int> right)

= Unsafe methods for operating over pointers

public static unsafe Vector256<sbyte> LoadVector256(sbyte* address)

Using Intel Hardware Intrinsics in .NET Core

using System.Runtime.Intrinsics.X86; Import the namespace to use Intel HW intrinsic
using System.Runtime.Intrinsics; Import the namespace to use Vector128/256<T>
static int[] Func(int[] data) as needed
{
if (Avx2.IsSupported) Check hardware ISA support before using any
{ HW intrinsic
// AVX2 implementation
} The checks will be optimized away by the
else if (Sse.IsSupported) Just-In-Time compiler
{
// SSE implementation NOTE: Calling HW intrinsic on
} unsupported hardware will result in
else System.PlatformNotSupportedException
{
// Software scalar implementation
}

How to Vectorize a Ray-tracer?

Ray-tracer based on 3D vector computation

» Most of the underlying structures can be abstracted to 3D vectors
— Position/direction (x, y, z) in 3D space, color (R, G, B)

Vectorize the underlying 3D vector computation

= AoS (Array of Structure)

= SOA (Structure of Array)

A0S vectorization

Example: Add 3D vectors of float on AVX-capable machine

Scalar
X1 Y9 Z7 |+ X ¥, Z, X1 Y1 41 - X2 Y2 %3 -
XMM1 XMM2
X=Xq+ X5
y=Y.+VY, vaddps xmm, xmm1, xmm?2
z=24% 2,

Cannot leverage wider SIMD architecture!

i@ . 15

SoA vectorization

Example: Add 3D vectors of float on AVX-capable machine SoA
X, 2 Z, + Xz Y2 Z;
X1 Y1 47 - X2 Yo Z5- X2 || veo 11 2 X2 | V2 11 22
XMM1 XMM?2 X3 Y13 Z13 X3 Y23 Zy3
X1a Y1a Zq4 X4 Y24 Z24
X1s Yis Z15 §25 Yas Z25
X16 Y16 Z16 26 Yae Z26
vaddps xmm, xmm1, xmm2 Xi |y ||z X || v || 2
X1g Yis Z18 X2 Yas “28
class YMM1 YMM2 YMM3 YMM4 YMM5 YMM6
public float vaddps ymm, ymm1, ymm4
public float

vaddps ymm, ymm2, ymm5
vaddps ymm, ymm3, ymm®6

public float

intel‘ . 16

!

0

:

[
|

ol
ot

DEMO |
-~ SOA-BASED RAY TRACER PERFORMANCE

Intel Hardware Intrinsics in Use

= CPU math operations in ML.NET

= SoA implementation of C# Raytracer

= Bit operations

400

= Matrix4x4 operations 50
= BLAKE? hashing

o
w
=

= Your application!

Running Time (us)
- - ~N
o w o
(=] o o

w
o

0

Running time of CPU math operations in native and managed code

(implemented with SSE hardware intrinsics)

W Native = Managed

AddScalarU ScaleAddU Addu SumU SumSqDiffu SumAbsDiffu MaxAbsDiffu

*The figure shown above is from Microsoft blog on MLNET

DotU Dist2

intel' \ 18

https://blogs.msdn.microsoft.com/dotnet/2018/10/10/using-net-hardware-intrinsics-api-to-accelerate-machine-learning-scenarios
https://github.com/dotnet/coreclr/pull/18839
https://github.com/dotnet/corefx/pull/26190
https://github.com/dotnet/corefx/pull/31779
https://github.com/saucecontrol/Blake2Fast

| — SN W . k
Qe : : \
Y/

TURBOCHARGE YOUR APPLICATIONS WITH s
INTEL” HARDWARE INTRINSICS = » =

Accelerate Your Applications

= Understand your bottlenecks
— Intel VTune™ Amplifier is a great tool for profiling .NET Core application

= Use existing wealth of knowledge available on hardware intrinsics

— Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

— How-to guides: https://software.intel.com/en-us/articles/how-to-use-intrinsics

» Explore existing solutions in C/C++

— E.g., “Fast conversion from UTF-8 with C++, DFAs, and SSE intrinsics”
(https://github.com/BobSteagall/CppCon2018)

= Optimize your application & re-measure

= Contribute to .NET Core and hardware intrinsics

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/en-us/articles/how-to-use-intrinsics
https://github.com/BobSteagall/CppCon2018

BACKUP

Intrinsic Programming Tips

Developers are responsible for checking hardware support
— Different from higher-level SIMD APIs where software fallback is provided

Test your application with different ISA levels

— Use environment variables: e.g., COMPlus_EnableAVX

Instruction encoding issues are handled automatically
— No need to worry about AVX/SSE transitions
— Best encoding by the JIT

Use using static for concise syntax

(lntel) |
experience
what’s inside”

