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Example Deep Learning Algorithms
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Convolutional Neural Networks (CNN)

« Effective for computer vision

* Fewer parameters than fully
connected networks

« Translational invariance

* Classic networks: LeNet-5,
AlexNet, VGG




Graphics Processing Units (GPUs)

* Great at performing a
lot of simple
computations such as
matrix operations

« Well suited to deep
learning algorithms




Single Node Multi-GPU




Greenplum Database and Apache MADIib
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Deep Learning on a Cluster

Num | Approach Description

1 Distributed deep learning | Train single model architecture across the cluster.

Data distributed (usually randomly) across segments. T

2 Data parallel models Train same model architecture in parallel on different
data groups (e.g., build separate models per country).

3 Hyperparameter tuning Train same model architecture in parallel with different
hyperparameter settings and incorporate cross
validation. Same data on each segment.

4 Neural architecture Train different model architectures in parallel. Same

search data on each segment.

this
" talk
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Workflow



Data Loading and Formatting

M . EE
CHADEH«ETS
Sl W ¥

EEuEEERE P

— - - i — Keras or
P J P

T e

A~ s B

LEEGEDSanE
B P 2
ST
dELEEES S

Raw images

Tooling in dev

1)
>R
/
3
psql MADIib pre-
Python COPY processor
>-G—> -
9,
3
B
[
numpy arrays CSV files Greenplum table
LxWx3 for color 1 image per line id | image | class
LxWx1 for b&w n images per file 1 |{.} | airplane
2 | {.} |car

Ready for
deep learning

Greenplum table

id2 | images | class
1 | {{..{..}..} | {airplane, car, ...}
2 | {{..X..}..} | {horse, boat,....}

Shuffled, packed and distributed
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lterative Model Execution

Stored Procedure for Model

model = init (..)
WHILE model not converged
model =
SELECT
model.aggregation (..)
FROM
data table
ENDWHILE
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Distributed Deep Learning Methods

* QOpen area of research”

+ Methods we have investigated so far:
— Simple averaging
— Ensembling
— Elastic averaging stochastic gradient descent
(EASGD)

* Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis
https://arxiv.org/pdf/1802.09941.pdf
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https://arxiv.org/pdf/1802.09941.pdf

Some Results



Testing Infrastructure

Google Cloud Platform (GCP)
Type n1-highmem-32 (32 vCPUs, 208 GB memory)
NVIDIA Tesla P100 GPUs

Greenplum database config
— Tested up to 20 segment (worker node) clusters
— 1 GPU per segment
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CIFAR-10

* 60k 32x32 color
Images in 10 classes,
with 6k images per
class

» 50k training images
and 10k test images

https://www.cs.toronto.edu/~kriz/cifar.html
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https://www.cs.toronto.edu/~kriz/cifar.html

Places

« Images comprising ~98%
of the types of places in the

elevator door

___windmill train station platform

veterinarians office

fishpond
1] i': FRpL i/ Ii
-* g X/ T

world
« Places365-Standard: 1.8M P P
images from 365 scene e pum— e ce
categories Ol B --Q !..L.l
* 256x256 color images with i m = AR — N %
50 images/category in . ]

validation set and 900
images/category in test set

http://places2.csail.mit.edu/index.html



http://places2.csail.mit.edu/index.html

6-layer CNN - Test Set Accuracy (CIFAR-10

CIFAR-10
1 == 1 segment OPERATION DATA DIMENSIONS  WEIGHTS(N)  WEIGHTS(%)
== 4 segments
Input  ##### 3 32 32
== 8 segments Conv2D  \|/ —memmmmmmmmeeeeeaee 896 0.0%
== 16 segments relu  ###s# 32 320 32
Dropout | || ==mmmmmmmmmm e ) 0.0%
i 32 32 32
ConvaD  \|/ —mmmmmmeememoooe- 9248 0.4%
relu  ##### 32 32 32
0.75 MaxPooling2D Y max ------------------- (] 0.0%
HHHE 32 16 16
Conv2D  \|/ mmemmmmmmmmeeeeee 18496 0.8%
relu  ###s# 64 16 16
Dropout | || ==mmmmmmmmmm e ) 0.0%
HEH 64 16 16
ConvaD  \|/ —mmmmmmemmemoooe- 36928 1.5%
g‘ relu ####s 64 16 16
MaxPooling2D Y max ------------------- -] 0.8%
g 0.5 iR 64 8 8
§ Conv2D  \|/ mmemmmmmmmmeeeaee 73856 3.1%
relu
§ Dropout ] 0.0%
[
Conv2D 147584 6.2%
relu
MaxPooling2D ] 0.0%
0.25 Flatten ] 0.0%
Dropout ] 0.0%
Dense 2098176 87.6%
relu
Dropout [} 0.8%
Dense 10250 0.4%
softmax
0
100 200 300 400
— https://blog.plon.io/tutorials/cifar-10-cla

ssification-using-keras-tutorial/

Method: Model weight averaging


https://blog.plon.io/tutorials/cifar-10-classification-using-keras-tutorial/
https://blog.plon.io/tutorials/cifar-10-classification-using-keras-tutorial/

6-layer CNN - Runtime (CIFAR-10)

CIFAR-10
1250 A 1segment
A 4 segments
A 8 segments
A 16 segments
1000
750
z
£
-]
&
500
250
0
60% 65% 70% 75% 80%
Test set accuracy

Method: Model weight averaging
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1-layer CNN - Test Set Accuracy (CIFAR-10)

CIFAR-10

0.8 == 1 segment
= 4 segments
== 8 segments

== 16 segments

model.add(Conv2D(32, kernel_size=(3, 3),
activation="relu’,
input_shape=(32,32,3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))
model.compile(loss="categorical_crossentropy',
optimizer=Adam(),
metrics=['categorical_accuracy'])

Test set accuracy

0.2

100 200 300 400

Iteration

Method: Model weight averaging
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1-layer CNN - Runtime (CIFAR-10)

CIFAR-10

5000

4000

3000

Runtime (s)

2000

1000

A 1segment
A 4segments
A 8 segments
A 16 segments

55% 60% 65% 70% 75%

Test set accuracy

Method: Model weight averaging
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VGG-11 (Config A) CNN - Test Set Acc (Places50

Places50
80.00%
—
60.00%
oy
]
=1
Q
8 40.00%
k]
7]
7]
k|
20.00%
0.00%

Iterations

Method: Model weight averaging

60

100

== 1] segment
== 5 segments
10 segments

== 20 segments

ConvNet Configuration
A A-LRN B (6] D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight [ 19 weight
layers layers layers layers layers layers
input (224 X 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 | conv3-64 conv3-64 | conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
| conv3-128 | conv3-128 | conv3-128 | conv3-128

‘maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 || conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 || conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 || conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

‘maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 § conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

133M parameters FC-4096

FC-4096

FC-1000

soft-max

https://arxiv.org/pdf/1409.1556.pdf
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https://arxiv.org/pdf/1409.1556.pdf

VGG-11 (Config A) CNN - Runtime (Places50)

Places50
30,000.0 A 1segment
A 5segments
A 10 segments
A 20 segments
20,000.0
z
@
£
=
A
10,000.0 //
0.0
45% 50% 55% 60% 65%

Test set accuracy

Method: Model weight averaging
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Ensemble with Places365

365
outputs
Segment 1 P
Segment 2 J 365
=L 365 outputs
" outputs
Simple CNN
Segment n 365
= outputs

AlexNet

https://papers.nips.cc/paper/4824-imagenet-classification-with-d

eep-convolutional-neural-networks.pdf
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

AlexNet+Ensemble CNN - Test Set Acc (Places 365)
(20 segments)

Places365-Standard

@ Ensemble A Weighed Avg (AlexNet)

8.00%

6.00%

Increase in test set Increase in test set

1
1
1
1
accuracy from ensemble r
1
1
I
1

£ accuracy from ensemble
oy . . . .
g after 1 iteration after 40 iterations
§ 4.00%
©
g
7]
3
'_ -

2.00% ® |_I

a_ !

0.00%

12 3 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Iteration

Method: Model weight averaging with simple ensemble CNN
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

1-layer CNN - Test Set Accuracy (Places365)
(20 segments)

60.00% == Alpha = 0, Beta = 1 (standard weight averaging)
== Alpha =0.001, Beta=0.9

“* Alpha =0.001, Beta=0.8

== Alpha = 0.001, Beta = 0.7

== Alpha = 0.001, Beta = 0.6

== Alpha = 0.001, Beta=0.5

== Alpha = 0.01, Beta=0.9

== Alpha =0.01, Beta = 0.6

40.00%

g

B model.add(Conv2D(32, kernel_size=(3, 3),
2 activation="relu’,

" 20.00% input_shape=(32,32,3)))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(n_classes, activation='softmax’))

model.compile(loss="categorical_crossentropy',
optimizer=Adam(),

0.00% ics=[" i
5 70 P 20 25 30 metrics=['categorical_accuracy'])

Iteration

Method: Elastic averaging stochastic gradient descent (EASGD)
https://arxiv.org/pdf/1412.6651.pdf



https://arxiv.org/pdf/1412.6651.pdf

Lessons Learned and Next Steps



Lessons Learned

 Distributed deep learning can potentially run faster
than single node, to achieve a given accuracy

* Deep learning in a distributed system is challenging
(but fun!)

« Database architecture imposes some limitations
compared to Linux cluster
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Infrastructure Lessons Learned

« Beware the cost of GPUs on public cloud!
 Memory management can be finicky
— GPU initialization settings and freeing TensorFlow
memory
* GPU configuration
— Not all GPUs available in all regions (e.g., Tesla P100
avail in us-east but not us-west on GCP)
— More GPUs does not necessarily mean better
performance
 Library dependencies important (e.g., cuDNN, CUDA

and Tensorflow)
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Future Deep Learning Work™*

/

* 1.16 (Q1 2019)

* Initial release of distributed deep learning models using

Keras with TensorFlow backend, including GPU support

« 2.0 (Q2 2019)

* Model versioning and model management
« 2.X (2H 2019)

* More distributed deep learning methods

» Massively parallel hyperparameter tuning

* Support more deep learning frameworks

 Data parallel models

J

*Subject to community interest and contribution, and subject to change at any time without notice.

Enlib
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Thank you!



Backup Slides



Apache MADIib Resources

+  Web site *  Mailing lists and JIRAs

— http://madlib.apache.orqg/ — https://mail-archives.apache.org/mod mbox/incu
o bator-madlib-dev/
‘ Wiki — http://mail-archives.apache.org/mod_mbox/incub
—  https://cwiki.apache.org/confluence/display/MAD ator-madlib-user/
LIB/Apache+MADIib

— https://issues.apache.org/jira/browse/MADLIB

. User docs . PivotalR
— http://madlib.apache.org/docs/latest/index.html

— https://cran.r-project.org/web/packages/PivotalR/
index.html

«  Jupyter notebooks er
g

—  https:/github.com/apache/madlib-site/tree/asf-sit »  Github
e/community-artifacts —  https://github.com/apache/madlib

- https://github.com/pivotalsoftware/PivotalR

. Technical docs
— http://madlib.apache.org/design.pdf

. Pivotal commercial site
—  http://pivotal.io/madlib


http://madlib.apache.org/
https://cwiki.apache.org/confluence/display/MADLIB/Apache+MADlib
https://cwiki.apache.org/confluence/display/MADLIB/Apache+MADlib
http://madlib.apache.org/docs/latest/index.html
https://github.com/apache/madlib-site/tree/asf-site/community-artifacts
https://github.com/apache/madlib-site/tree/asf-site/community-artifacts
http://madlib.apache.org/design.pdf
http://pivotal.io/madlib
https://mail-archives.apache.org/mod_mbox/incubator-madlib-dev/
https://mail-archives.apache.org/mod_mbox/incubator-madlib-dev/
http://mail-archives.apache.org/mod_mbox/incubator-madlib-user/
http://mail-archives.apache.org/mod_mbox/incubator-madlib-user/
https://issues.apache.org/jira/browse/MADLIB
https://cran.r-project.org/web/packages/PivotalR/index.html
https://cran.r-project.org/web/packages/PivotalR/index.html
https://github.com/apache/madlib
https://github.com/pivotalsoftware/PivotalR

Infrastructure Lessons Learned (Details

Num Category Lessons learned
Beware the cost of scale testing with

1 Cost GPUs
GPU memory During initialization, set
2 management gpu_options.allow_growth=False

During initialization, set
GPU memory gpu_options.per_process_gpu_memor
3 management y_fraction

CPU memory CPU memory needs not always crystal
4 management clear.

TensorFlow memory Be very careful about freeing
6 management TensorFlow memory.

Increasing GPUs per segment did not
5 Multi-GPU help beyond 2.

7 GPU selection Certain GPUs n/a in certain zones

We are currenlty using the Tesla P100
GPU which is more expensive but way
8 GPU selection faster than Tesla K80.

CUDA, cuDNN and TensorFlow
9 Library dependencies versions must be in sync.

Notes

Easy to spend $30K/month on scale testing on 2-3 clusters from 1-20 segments (worker
nodes) on GCP with Tesla P100 GPUs.

There are a lot of blog posts and forum answers where people recommend setting this to
True. We tried that at first, but concluded it's not the best idea for our purposes. Setting it to
True means it only requests a small amount of memory when you initialize the tensorflow
session, but then every time you perform any operations (fit, evaluate, etc.) it will try to
allocate more memory as needed. This is dangerous because you never know when you will
run out of memory, especially if multiple GPU’s are sharing. It's unpredictable and the errors
are very difficult to sort out after it happens. Much cleaner to diagnose is setting it to False,
where a fixed fraction of the GPU memory (see next option:
per_process_gpu_memory_fraction) is allocated up front, and never grown after that. Any
issues will come up right at the beginning, not suddenly after you've trained half the dataset!

This tells each segment what fraction of the GPU memory to use. If every segment has it's
own GPU, then pick something close to 1.0. We have been using 0.9 just in case there are
some small things that need to run (such as nvidia-smi tool, used for monitoring GPU
memory usage.) If you want more than one segment to share a GPU, this has to be less than
0.5.

All the hosts on our two gpu clusters are high memory machines (208 GB). We've never seen
it use more than 50GB or so in htop, but at some point we were getting crashes with only
120GB and raising it to 208GB.

The only guaranteed solution that works is to make sure the process that runs TensorFlow
dies before any new TF session is started (killing the process will free the memory). Our
current solution includes creating a TF session for each iteration and closing it at the end of
the iteration.

We've tried running Keras on only 1 segment per host with 1, 2, 4, and 8 GPU’s per segment,
and compared performance. 2 was a nice improvement from 1, but beyond that 4 and 8
didn’t seem to add much.

Availability of a certain type of GPU may depend on the region in GCP. For ex Tesla P100 is
not available in us-east but is available in us-west.

We saw segmentation faults with the GPU setup if the TensorFlow version is newer than what
is supported by cuDNN library. One solution is to downgrade the TF version or alternatively
upgrade the cuDNN version

The problem was that the cuDNN library was older than what TF 1.11 expected. We had
installed tensorflow using pip install tensorflow-gpu which always gives us the latest TF. |
downgraded the TF version to 1.9 so that it matches the cuDNN library

pip install --upgrade --force-reinstall tensorflow-gpu==1.9.0 --user
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SQL Interface

madlib_keras_fit (

source_table,

model,
dependent_varname,
independent_varname,
model_arch_table,
model_arch_id,
compile_params,
fit_params,
num_iterations,
num_classes,

use_gpu,
validation_table,
name,
description,
initial_weights,
distributed

)i

madlib_keras_predict
model,
model_id
data_table,
output_table,
id_col_name
);




Greenplum Integrated Analytics

Data Transformation

Traditional Bl
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Deep Learning
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EE'"’ Scalable, In-Database
Machine Learning

Apache MADIib: Big Data Machine Learning in SQL

Open source, For PostgreSQL Powerful machine
top level and Greenplum learning, graph,
Apache project Database statistics and analytics
@ for data scientists
» Open source https://github.com/apache/madlib
* Downloads and docs http://madlib.apache.org/

o  Wiki https://cwiki.apache.ora/confluence/display/MADLIB/
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History EE“b

MADIib project was initiated in 2011 by EMC/Greenplum architects and
Professor Joe Hellerstein from University of California, Berkeley.

WISCONSIN UF

\\‘ X UNIVERSITY OF WISCONSIN-MADISON UNIVERSITY Of
Berkeley FLORIDA

UrbanDictionary.com:
mad (adj.): an adjective used to enhance a
noun.

1- dude, you got skills.

2- dude, you got mad skKills.
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- - —
sb lib FUNCtons Gl
=
Supervised Learning Graph Data Types and Transformations
Neural Networks All Pairs Shortest Path (APSP) Array and Matrix Operations
Support Vector Machines (SVM) Breadth-First Search Matrix Factorization
Conditional Random Field (CRF) Hyperlink-Induced Topic Search (HITS) * Low Rank
Regression Models Average Path Length « Singular Value Decomposition (SVD)
» Clustered Variance Closeness Centrality Norms and Distance Functions
» Cox-Proportional Hazards Regression Graph Diameter Sparse Vectors
» Elastic Net Regularization In-Out Degree Encoding Categorical Variables
* Generalized Linear Models PageRank and Personalized PageRank Path Functions
» Linear Regression Single Source Shortest Path (SSSP) Pivot
» Logistic Regression Weakly Connected Components Sessionize
* Marginal Effects Stemming
* Multinomial Regression Utility Functions
* Naive Bayes Columns to Vector Statistics
* Ordinal Regression Conjugate Gradient Descriptive Statistics
*  Robust Variance Linear Solvers + Cardinality Estimators
Tree Methods * Dense Linear Systems -« Correlation and Covariance
+ Decision Tree + Sparse Linear Systems « Summary
* Random Forest Mini-Batching Inferential Statistics
PMML Export » Hypothesis Tests
Unsupervised Learning Term Frequency for Text Probability Functions
o = Vector to Columns
Association Rules (Apriori)
CIystgrmg (k-Means) ) Sampling Model Selection
Prlnplpal Cor_nponent Anal_y_SIS (PCA) _ Balanced Cross Validation
Topic Modelling (Latent Dirichlet Allocation) Random Prediction Metrics
Stratified Train-Test Split
Nearest Neighbors
¢ k-Nearest Neighbors Time Series Analysis
+ ARIMA
Aug 2018
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Execution Flow

Client

Aggregation
Stored

Database

Procedure

Master

Result
Set
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Architecture

User Interface

RDBMS
Built-in
Functions

High-Level Iteration Layer
(iteration controller)

Low-level Abstraction Layer

C API
(Greenplum, PostgreSQL, HAWQ)

SQL

Python

L C++ ﬁ Eigen
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