Developing
data structures

for JavaScript

JavaScript devroom, FOSDEM 2019, Brussels

Why and how to implement efficient data
structures to use with node.js or in the browser?

Who am I?

Guillaume Plique

alias Yomguithereal on both Github and Twitter.

Research engineer working for Sciences Po's médialab.

https://github.com/Yomguithereal
https://twitter.com/Yomguithereal
https://medialab.sciencespo.fr/

What's a data structure?

«Web development is not real development
and is henceforth easier.»

Someone wrong on the Internet.

«Web development is trivial and web
developers don't need fancy data structures or
any solid knowledge in algorithmics.»

Someone also wrong (and pedant) on the Internet.

Don't we already have fully satisfying data structures in
JavaScript?

e Array = lists of things
e Object = key-value associations
e Map and Set with ES6

e Why would we want other data structures in
JavaScript?

e Convenience and bookkeeping

e A MultiSet

counts = {};
(item something) {
(!(item counts))

counts[item] = 0;

counts[item]++;

counts = MultiSet();

(item something)

counts.add(item);

o Complex structures: a Graph
Sure, you can "implement” graphs using only Array and Object™.
But:

e Lots of bookkeeping (multi-way indexation)
« Wouldn't it be nice to have a legible interface?

Examples taken from the graphology library:

graph = Graph();
neighbors = graph.outNeighbors(node);

graph.forEachEdge(node, (edge, attributes) => {

console.log(attributes.weight);

});

https://graphology.github.io/

e Sometimes Arrays and Objects are not enough

e More than just tacky website candy

e We process data on the client nowadays.

e Node.js became a thing.

e Some algorithms cannot be efficiently implemented without
custom data structures (Dijkstra or Inverted Index for full text
search etc.).

e The QuadTree

60 © ° g 0 0 og 0O O oo D o POO
%5 o 00 o o oo 3»0 o © o
QQ o 00 oo (o]
% o 8 08 o ° o o o 00
@ 80 0400 &0 o (o] o
00 oo o8 o o O o © o °
?no o o o o o2 o [eXe]
00 «° o oo o
@@ © o o8 o o o
0 O o o & o © ") oo 00 4o
69%0 o o o @ o o o
0o o o o©
o o o o o
8o o %o %o o o
o © 1) o o o o©)
o) o o) o [

e The QuadTree

. 23 TP
J [+
o K
11
°re o o
6ol sl O
) %’: o ro) O(T¥ 5
o OBH T 19
| oo :-IE O
o | ¢ ol & [9) o
™~ J
o
d; C 19 o 9 o
[0] oT fo o

e What are the challenges?

e Interpreted languages are far from the metal

e No control over memory layout

e No control over garbage collection

e JIT & optimizing engines such as Gecko / V8

Benchmarking code accurately is not easy.

It does not mean we cannot be clever about it.

e Implementation tips

e Time & memory performance

e Minimizing lookups

"Hashmap" lookups are costly.

Graph.prototype.getNodeAttribute = (node, data) {

(._hodes.has(node))
Error(...);

data = ._hodes. (node);

data[name];

Graph.prototype.getNodeAttribute = (node, data) {

data = ._hodes. (node);

Error(...);

data[name];

Result, 100k items

Two lookups: 31.275ms
One lookup: 15.762ms

The engine is clever. But not that clever. gtimproves frequenty,

though...)

The «let's code badly, the engine will clean up my mess»
approach will not work.

e Creating objects is costly

e Avoid allocating objects.
e Avoid /(?:re-)?creating/ regexes.
e Avoid nesting functions whenever possible.

X => /regex/.test(x);

= /regex/;
X => .test(x);

(array) {
array.forEach(subarray => {

subarray.forEach(x => console.log(x));

});

e Mixing types is bad

, /four/, {five: Date()}];

e The poor man's malloc

e Byte arrays are fan-ta-stic.

e Byte arrays are light.

e You can simulate typed memory allocation: Uint8Array,
Float32Array etc.

e Implement your own pointer system!

And have your very own "C in JavaScript"™.

A linked list (with pointers):

head -> (a) -> (b) -> (c) -> ¢

LinkedListNode(value) {
.hext = 5

.value = value;

node.next = otherNode;

A linked list (rolling our own pointers):

values
next

LinkedList(capacity) {
.head =
.next = Uintl6Array(capacity);

.values = Array(capacity);

.next[nodeIndex] = otherNodelndex;

e Let's build a most efficient LRU Cache!

e An object with maximum number of keys to save up some RAM.

e If we add a new key and we are full, we drop the Least Recently
Used one.

e Useful to implement caches § memoization.

A ~doubly~ linked list:

[0, 1, 2]

head -> (a) <-> (b) <-> (c) <- tail

pointers & values:

{a: 6, b: 1, c:
values ER

name set getl wupdate get2 evict
mnemonist-object 15314 69444 35026 68966 7949
tiny-lru 6530 46296 37244 42017 5961
Iru-fast 5979 36832 32626 40900 5929
mnemonist-map 6272 15785 10923 16077 3738
Iru 3927 5454 5001 5366 2827
simple-lru-cache 3393 3855 3701 3899 2496
hyperlru-object 3515 3953 4044 4102 2495
js-lru 3813 10010 9246 10309 1843

Bench here - I masked libraries which are not LRU per se.

https://www.npmjs.com/package/mnemonist
https://npmjs.com/package/tiny-lru
https://npmjs.com/package/lru-fast
https://www.npmjs.com/package/mnemonist
https://www.npmjs.com/package/lru
https://npmjs.com/package/simple-lru-cache
https://npmjs.com/package/hyperlru-object
https://www.npmjs.com/package/js-lru
https://github.com/dominictarr/bench-lru

e Function calls are costly
Everything is costly. Life is harsh.

This means that rolling your own stack will always beat recursion.

recurse(node, key) {
(key < node.value) {
(node.left)

recurse(node.left, key);

(key > node.value) {

(node.right)

recurse(node.right, key);

iterative(root, key) {
stack = [root];
(stack.length) {

node = stack.pop();
(key < node.value) {

(node.left)
stack.push(node.left);

(key > node.value) {
(node.right)

stack.push(node.right);

e What about wasm etc. ?
Lots of shiny options:

1. asm.js
2. WebAssembly
3. Native code binding in Node.js

Communication between those and JavaScript has a cost that negates
the benefit.

This is only viable if you have long running code or don't need the
bridge between the layer and JavaScript.

e Parting words

e Yes, optimizing JavaScript is hard.

e But it does not mean we cannot do it.

e Most tips are applicable to every high-level languages.

e But JavaScript has its very own kinks
The ByteArray tips absolutely don't work in python.

It's even slower if you use numpy arrays. (you need to go full native).

e The gist
To be efficient your code must be statically interpretable.

If you do that:

1. The engine will have no hard decisions to make
2. And will safely choose the most aggressive optimization paths

e Rephrased

Optimizing JavaScript = squinting a little and pretending really hard
that:

1. The language has static typing.
2. That the language is low-level.

e Associative arrays are the next frontier

For now, there is no way to beat JavaScript's objects and maps when
doing key-value association.

Yet...

e So implement away!

e References

Examples were taken from the following libraries:

e mnemonist: yomguithereal github.io/mnemonist
e graphology: graphology.github.io
e SIgma.js: sigmajs.org

https://yomguithereal.github.io/mnemonist
https://graphology.github.io/
http://sigmajs.org/

Thanks!

