

Technical overview

Version 1.3 – 12 June 2018
Author: Vittorio Bertola – vittorio.bertola@open-xchange.com

This document is copyrighted by the ID4me Association AISBL and is released under a Creative Commons
BY-ND-4.0 International license, which applies to the text but not to the technologies described in it or to
any of their implementations. Any source code snippet included in this document is released under the
MIT “Expat” license unless otherwise stated.

 Technical overview – v1.3

 2

INDEX

SCOPE OF THIS DOCUMENT... 3

KEY FEATURES ... 3

ELEMENTS OF THE ARCHITECTURE .. 4

REGISTRATION OF A NEW IDENTIFIER ... 7

USE OF AN IDENTIFIER FOR LOGIN .. 8

A COMPARISON WITH OPENID CONNECT ... 10

DRAFT PUBLIC STANDARDS ... 12

SANDBOX AND DEMO ENVIRONMENT .. 12

Technical overview – v1.3

 3

SCOPE OF THIS DOCUMENT

This document describes the basic technical architecture and features of the ID4me platform for federated
online digital identity services. While this document does not represent a full technical reference, it can help
technical experts to understand the ID4me standard and implementation requirements in detail, including a
point-by-point comparison with the existing and underlying OpenID Connect standard.

More specifically, the first part of the document, including “Elements of the architecture”, provides the
general concepts that any party adopting ID4me in any role should know. The second part of the document,
describing the flows to create and use an identifier, is useful to people willing to implement the standard on
their own, but is not necessary for those that only want to use the reference libraries that the ID4me
association is supplying, especially as a relying party. The final sections contain useful pointers and general
information related to the standard and to its relationship with other standards and standard-making bodies.

KEY FEATURES

ID4me is a federated digital identity service that aims to provide two main functions:

• Authorization of a user for access to any third party accepting ID4me identifiers (“single sign-on” on
an Internet scale);

• Controlled communication of the user’s personal information to the third parties accessed by the
user.

In other words, a user that owns an ID4me identifier can use it to log into any website or online service
supporting ID4me, even without prior registration; on first access to that service, the service can request
access to the user’s personal information as entered by him into his profile; if the user consents to this access,
the requested information will be made available to the service, which can thus automatically create a local
account or profile for the user, associated to his ID4me identifier.

The service is federated, meaning that multiple interoperable providers of identifiers can exist, including
personal providers self-hosted by their users, and that all of them are intrinsically supported by any online
service implementing the ID4me standard. Users are free to pick any provider and to move their identifier to
a different one whenever they want.

 Technical overview – v1.3

 4

ID4me is, in itself, a “weak” identity standard; the purpose is to authorize the user, i.e. to ensure that the
user of a given identifier is always the same that initially acquired that identifier at registration. Accordingly,
there is no initial actual authentication of the user, and his identity and personal information are entirely self-
declared, as it currently happens for most online registration systems. The standard may however be
extended to support third-party validation of the user’s personal information and thus provide stronger proof
of the user’s real world identity.

To make implementation easier, ID4me builds over the existing OpenID Connect/OAuth 2.0 standard, but it
expands it on a number of dimensions. Thus, all communications between the different parties happen via
HTTPS, and make use of signed JSON web tokens (JWTs). This choice also allows to make the user experience
easy to understand for users, as the flow is similar to currently existing OAuth-based authorization systems,
and to reduce implementation costs, as existing OpenID Connect server and client implementations can be
used as a starting point, and in some cases they only need some configuration and customization to work
within the ID4me framework.

Moreover, ID4me also builds over the Domain Name System (DNS), the most fundamental directory of the
Internet. The DNS, with the use of DNSSEC, provides data authentication and integrity as servers exchange
information with each other; the standard does not require any out-of-band, real world authentication of
the various parties in advance, making it possible to scale easily and to build a decentralized federation of
actors, similarly to how email works. The DNS is also used to store public information about each ID4me
identifier, making it simply accessible throughout the entire Internet.

While the entire system is based on HTTPS, nothing prevents clients for other protocols (SSH, IMAP…) from
implementing the ID4me login flow, as long as they are able to ask their user for the identifier, for the
authentication credentials and for consent on which claims should be shared (either interactively during the
login process, or as secure configuration entries supplied once for all at installation) and to make
programmatical REST-like HTTPS connections to perform the authorization.

ELEMENTS OF THE ARCHITECTURE

The ID4me standard refers to the following four roles.

User: Any physical user of the Internet, but also any entity (company, organization…) or even software /
service instance, that needs to authorize himself/itself on online services.

Relying party: An online service that uses ID4me to validate user logins.

Identity authority: An online entity ensuring the correct authorization of the user at every login, by storing
and verifying his authentication credentials, such as his password. It represents the “back-end” and trust
source for the provision of the authorization service, but it generally does not deal directly with the user, and
does not store or supply the user’s personal information.

Identity agent: An online entity providing the ID4me service to users. It represents the “front-end” for the
provision of the authorization service, selling or supplying ID4me identifiers to users and creating them at an
identity authority. It also stores the user’s personal information, communicating it to the relying parties when
the user consents, and can potentially provide the user with reports and statistics on the service.

The separation of roles between the authority and the agent is similar to the separation of roles between the
registry and the registrar in the domain name industry.

Technical overview – v1.3

 5

The ID4me standard allows users to identify themselves by an identifier. Any valid hostname in the Domain
Name System can be used as an ID4me identifier, even if it does not correspond to any existing host and it is
not associated to any A/AAAA record. For the system to function, it is necessary to perform a DNS query and
retrieve some data stored under that hostname. This implies that, to be able to use a hostname as his ID4me
identifier, the user needs to have access to its DNS zone and to be able to edit and publish it, either because
he owns the domain, or because he has been allowed by the owner of the domain.

This allows the co-existence of many possible service scenarios – these are just a few examples:

• The user buys in a bundle a personal domain name, the ID4me service and the DNS management
service; the service provider registers the domain name, sets up the name servers, creates the
identifier by an identity authority of their choice, and adds the DNS records that allow the identifier
to work.

• The user already owns and manages a personal domain name, and acquires only the ID4me service;
the user can then configure the appropriate DNS records so that they point to his ID4me provider
and allow the identifier to work.

• The user owns a personal domain name and runs the name servers on his own servers; he can install
an ID4me server application, add the appropriate DNS records and run his ID4me identifier entirely
on his own.

• The user acquires the ID4me service from his ISP; the ISP gives him an ID4me identifier in the ISP’s
domain name and sets up the appropriate DNS records, either running the ID4me service on their
own or relying on external identity agents and authorities; no new domain name is registered.

While the identifier is the user-friendly string that people enter to identify themselves, identifiers should not
be used internally by relying parties as the primary key identifying the user. There are privacy and security
reasons for this: the same identifier could be reused by a different person if the ownership of the domain
name changes, or the user may move to a different domain name and thus change the identifier without
necessarily giving up the identity.

This is why ID4me introduces a separate identity handle, specifically designed to be used as the primary key
identifying a specific identity. There is no guarantee that the same identifier will always refer to the same
online identity, but the same identity handle will; also, the identity handle is guaranteed to be globally unique
in the entire platform.

In the OpenID Connect standard, identity providers (i.e. authorities in ID4me) are identified by a URI, chosen
by themselves in a domain name of their own and used as a base URL to reach their services, called the
“issuer identifier” (“iss” field of the identity token). Also, each identity provider identifies each identity it
manages by a “subject identifier” (“sub” field of the identity token), arbitrarily assigned as desired.

In ID4me, the identity handle is then a string formed by the concatenation of the “issuer identifier” and of
the “subject identifier”, conjoined by a “#” character; it is returned by identity authorities to relying parties
on authentication. For example:

Issuer identifier https://www.example.org/id4me
Subject identifier abc0rOabc3fYIYdykhnv/ff0+ABCiwH
Identity handle https://www.example.org/id4me#abc0rOabc3fYIYdykhnv/ff0+ABCiwH

As the issuer identifier is specified as a URI that cannot contain a fragment, it is guaranteed that the left-most
“#” character in the identity handle will represent the separator between the two strings. Given its nature,
the identity handle is a string of ASCII characters with no guaranteed maximum length, though ID4me
implementations will be only required to support identity handles of up to a certain length.

 Technical overview – v1.3

 6

Identity authorities are required to provide the same identity handle for the same identity to any specific
relying party where the user is logging into, but can optionally assign different identity handles for the same
identity to different relying parties.

Authorities can also associate the same identity handle to different ID4me identifiers, as long as they are
being used to access the same identity. This allows users to bind multiple identifiers, possibly from multiple
domain names, to the same identity, reducing the chances of a user completely losing access to it due to the
loss of the identifier’s domain name.

The ID4me identity handle is associated to authentication credentials. In its simplest form, the credential for
authentication is a password, but the system could support different types of credentials and multiple
authentication methods, for example implementing two-factor authentication. A key element of the
architecture is that only the user and the identity authority know the authentication credentials, while
neither the identity agent nor the relying parties ever gain access to them. This also makes it possible for
each identity authority to implement any type and combination of authentication credentials without having
to agree the mechanism with the other ID4me participants.

The user’s personal information is represented in ID4me by a set of claims. A claim is a couple made by a
standard claim name, identifying the information field (name, address…), and by its value, which are different
for each user. The claims are provided by the user to his identity agent, and communicated by the agent to
the relying parties, as a signed JSON web token, only after the user has consented, in front of the identity
authority, to share each single piece of information with that specific party.

ID4me supports the standard OpenID Connect Core claims, which include basic information such as the user’s
name, email and address. However, ID4me also wants to make it possible to exchange a broad range of claims
among any number of users and parties; this requires a standardization of the name, format and precise
meaning of a broad number of additional claims that are not defined in OpenID Connect.

These additional claims will bear names starting with “id4me.”, to ensure that no conflict can arise with other
OpenID Connect implementations; the list will be defined and maintained over time by the ID4me association
and its members. Agents and authorities are not required to support the additional claims, but they are
required to use the standard ID4me name for a given additional claim if they choose to support it.

ID4me introduces a dedicated ID4me DNS record format, which is used to announce public information
about an identifier. Initially, the three information elements that must appear are the protocol version used
(“v”, with a standard value of “OID1”) and which identity authority (“iss”, issuer in OpenID terminology) and
identity agent (“clp”, claims provider in OpenID terminology) are managing the identifier. The values for these
two fields are the base URIs that allow access to their well-known OpenID configuration, with the initial
scheme (“https://”) removed for brevity.

Similarly to other protocols using DNS-based information elements, such as SPF and DMARC, the information
is stored in the DNS via a TXT record containing a string of name-value couples; the record is associated to a
standard hostname obtained by prepending “_openid.” to the identifier itself.

For example, for the identifier “myname.example.org”, a DNS record similar to this must be defined:

_openid.myname.example.org IN TXT “v=OID1; iss=my.idauthority.de; clp=idagent.com/id4me”

The values of “iss” and “clp” can optionally contain a path and/or a port number, which will be included when
forming the URIs for service endpoints. These values must not however contain a URI scheme, as this is
anyway mandated to be HTTPS.

Technical overview – v1.3

 7

The existence of this record in the DNS also shows that the identifier has been correctly set up; if the zone is
secured with DNSSEC, it also gives a good degree of certainty on the fact that the user either owns the
“example.org” domain name or has been authorized by its owner, thus suggesting that the use of the
hostname as identifier is presumably legitimate. This is why ID4me requires that the zones hosting ID4me
DNS records are secured with DNSSEC, though this requirement will only start to be enforced in the final
production deployment.

REGISTRATION OF A NEW IDENTIFIER

The registration of a new identifier can be described, in a high level summary, by the following diagram.

The process starts by the user acquiring the service and requesting the creation of a new identifier to an
identity agent. If the identifier belongs to a new domain name, then the agent will first of all register it from
the appropriate TLD registry (step 2). The agent will then set up the identifier on its internal service platform,
and contact the identity authority of choice to request the creation of the identifier (step 3).

To have the proof that the agent and/or the user are really in control of that domain name, the authority will
run a challenge to get a domain name proof-of-possession; currently, a standard DNS-based challenge under
the ACME protocol (DNS-01) is used, but other types of challenges could be added in the future.

This challenge requires the creation into the DNS zone of another TXT record, under a hostname obtained by
prepending “_acme-challenge.” to the identifier; the TXT record must contain as value a challenge token that
the authority supplies to the agent in response to the identifier creation request. For example, for the
identifier “myname.example.org”:

_acme-challenge.myname.example.org IN TXT “aywTM9WAUakmXgoQr”

Now, if the identity agent manages the name servers for the domain name directly, it will set up and publish
the two DNS records: the ID4me DNS record that will be used throughout the life of the identifier by the
relying parties to discover who manages the identifier, and the ACME challenge DNS record that will only be
used during this identifier creation process. If the name servers are instead managed by the user, the agent
will provide the user with the two records; the user will have to add the records to the zone on its own, and
then confirm the operation on the agent’s system.

Once the DNS records are active and published, the agent will request to the authority the continuation of
the procedure; the authority will verify the challenge (step 5) and, in case of success, confirm the creation of
the identifier to the agent (step 6), which will in turn confirm it to the user.

 Technical overview – v1.3

 8

The agent will then redirect the user to a one-time URL, hosted by the identity authority and supplied by it
to the agent as an additional header in step 6, that will allow the user to set the password or any other
authentication credentials, and confirm the final activation of the identifier.

At this point, the user will be able to use the newly created identifier and credentials to log into both the
authority and the agent, as well as any other ID4me-compatible relying party. As a first step, however, the
user is expected to log into the agent and populate its identity with information, providing values for at least
a basic set of claims.

USE OF AN IDENTIFIER FOR LOGIN

Whenever a user wants to use an identifier for authorization in front of a relying party, the following high-
level diagram will be followed; it is a standard OpenID Connect Authorization Code Flow, with the ID4me
DNS-based discovery procedure in front of it, and with a distributed claims mechanism (as standardized in
OpenID Connect) at the end of it, if the retrieval of user information has been requested.

The process starts when the user gets to the login page on the relying party’s website, or to the equivalent
interactive feature on non-Web-based services. There, they are given the option to pick “Login with ID4me”
and to provide their identifier (not their authentication credentials).

The relying party, using either its own implementation or the standard relying party libraries freely provided
by the ID4me association, will first of all discover which identity authority and agent are managing the
identifier that was provided by the user, by making a DNS query for the ID4me DNS record described above
(step 2 in the diagram).

Then, if the relying party discovers an unknown authority, and only for the first time, it has to perform an
automatic configuration and registration operation (not shown in the diagram): as per the OpenID Connect
Discovery standard, it will append “/.well-known/openid-configuration” to the authority’s base URI as
retrieved from the DNS record, and it will perform an HTTPS connection there, receiving back a JSON object
that contains all the configuration parameters for the OpenID/OAuth service.

One of these parameters is the URL of the authority’s “registration endpoint”; the relying party will then
perform a second HTTPS connection to this endpoint, following the OpenID Connect Dynamic Client
Registration protocol, and will receive back a couple of credentials (“client_id” and “client_secret”) that will
be used to authenticate the relying party in front of that specific identity authority in any future operation.
The relying party can then store locally these credentials for reuse, so that this setup operation does not need
to be repeated every time; it will need to repeat this operation only if these credentials expire. As this

Technical overview – v1.3

 9

operation is entirely automated and does not require any out-of-band interaction (identity authorities must
not require any pre-existing authorization for access to the registration endpoint), this model is fully scalable
and allows easy support for any number of relying parties and identity authorities.

At this point, the actual login procedure begins, following a standard OpenID Connect flow; any existing
library implementing OpenID Connect should be able to perform the rest of the procedure out of the box.
The rest of the user experience will thus basically be the same as for the existing OpenID Connect/OAuth
based authorization systems, such as “login with Google” and “login with Facebook”.

While for simplicity the high-level diagram shows a direct login request by the relying party to the identity
authority (step 3), in reality this request is mediated through the user’s browser; the relying party, after
receiving the identifier as input, discovering the authority via DNS and performing the setup operation if
necessary, will return to the user agent an HTTPS redirection, pointing it to the authority’s “authorization
endpoint” URL as retrieved among the configuration parameters, and including its “client_id” and a list of the
claims (information fields) that it would like to know.

Thus, the user’s browser will perform a second HTTPS request (step 4), this time towards the identity
authority. If the authority implements some kind of permanent session management that allows it to
recognize the user automatically and securely, then the authority could actually skip the following steps and
just provide a valid “authorization code” to the user’s browser, redirecting it back to the relying party and
making the login process entirely transparent; the user would not even see the authority’s website. By
providing an authorization code to the user, the identity authority is effectively authorizing the login (step 5,
again mediated in practice through the user’s browser).

However, there are two separate checks that needs to be made by the authority between steps 4 and 5. First
of all, it must perform the actual authorization check; if it cannot recognize the user via an existing session,
it must ask for the user’s authentication credentials and verify them against its locally stored database. Then,
if this is the first time that the user logs into that specific relying party, or if the list of claims requested by
that relying party has changed, the authority has to show the user a list of the claims that would be shared
with the relying party, and to ask for consent; according to the law in Europe and elsewhere, the user has to
be able to provide or deny consent separately for each claim. Additionally, ID4me provides mechanisms for
parties to communicate to the users the reason what any claims are actually needed for. These two requests,
for authentication and for consent, could appear on two separate intermediate screens, or even combined
on a single one, hosted by the identity authority.

Whenever the authority decides to authorize the login, it should also perform an asynchronous callback to
the identity agent that manages the identifier (not shown in the diagram), notifying the login. This step is not
strictly required, but allows the agent to maintain and show a history of the logins, and to track potential
improper uses.

After the user receives an authorization code and gets redirected from the authority to the relying party, the
relying party has to validate the authorization code by establishing a direct connection (not shown in the
diagram) to the identity authority’s “token endpoint” URL, as provided in the authority’s configuration. There,
the relying party authorizes itself by presenting its “client_secret”, and exchanges the authorization code (if
valid) for a couple of tokens – the “identity token” and the “access token”.

The “identity token”, as described in the OpenID Connect specification, is the actual proof of login; it includes
the user’s identifier, in the custom additional field “id4me.identifier”, and the fields that form the identity
handle, as well as information on the authentication process and an expiration date. The identity token is
digitally signed by the identity authority; the token and its content can be used by the relying party to identify
the user and match the global identity with a local account on the relying party’s platform.

 Technical overview – v1.3

 10

The “access token” can be optionally used whenever the relying party does not just want to get the user
authorized, but also wants to know the content of some of his claims; it includes a list of claims whose sharing
was agreed by the user for that specific relying party, and thus authorizes the relying party to retrieve them
from the identity agent.

After receiving and validating the identity token, the relying party should also perform a callback to the
identity agent that manages the identifier (not shown in the diagram), notifying the login. This allows the
agent to match the two callbacks and verify that everything is correct, or take notice of an issue and of a
potential security breach if the two callbacks do not match.

In general, if this is the first time that the specific relying party encounters the specific identity agent, it first
has to discover his configuration and endpoint URLs by applying the already mentioned OpenID Discovery
standard process.

In the optional following phase (step 6), the relying party, after verifying the validity and the signature of the
identity token received by the authority, will connect to the identity agent’s “userinfo endpoint” URL. To be
more precise, as per the OpenID Connect standard, first the client has to connect with the identity authority’s
“userinfo endpoint” URL (not shown in the diagram), which will use the “distributed claims” mechanism
described in the standard to redirect the relying party to the “userinfo endpoint” of the appropriate identity
agent.

The connection to the “userinfo endpoint” does not require the relying party to be previously known or
registered at the identity agent, because the “access token” is a self-describing bearer token, and the simple
possession of it entitles the bearer to access the claims. However, the identity agent must verify that the
token is correctly signed by the appropriate identity authority, and to this extent it will use the authority’s
public keys (retrieving them from the location pointed out in the authority’s well known configuration file, if
necessary) and then use them to verify the signature of the token.

In response (step 7), the relying party will receive the content of the requested claims, which could then be
stored in the local profile for the user, creating it if this is the first login ever by that identifier into that relying
party.

In line of principle, all DNS queries must be secured with DNSSEC, and HTTPS connections must use DANE to
validate the certificate used by the web service that responds to them, requiring all identity authorities and
agents to publish and maintain TLSA records for the involved hostnames. However, this requirement may be
initially skipped for experimental deployments.

As a technical reference, at the end of the document you will find a more complex, two-parts diagram
representing in detail all the steps described above. Please note that the diagram describes two separate
requests by the user to provide first the password and secondly the consent on claims sharing, but they could
be conflated into a single one.

A COMPARISON WITH OPENID CONNECT

As described above, the entire login flow, starting from step 3 in the diagram, is compliant with OpenID
Connect; ID4me only adds the DNS-based discovery mechanism in front of it.

However, there are several other extensions and specializations that the ID4me standard introduces in
respect to OpenID Connect; we list them below for convenience.

Technical overview – v1.3

 11

1. OpenID Connect, as commonly implemented today, only supports a single identity provider
(centralized source of identifiers and server for authorizations); multiple parties can deploy the
standard, but the identifiers released by one of them will not interoperate with other identity
providers; a relying party must add separate support for each OpenID Connect deployment, leading
to cumbersome user experiences in which the user first has to pick whether he will log in with Google
or with Facebook or with another OpenID provider, and then can proceed. OpenID Connect provides
a mechanism to discover the provider for a given identity, but it is based on WebFinger and it is really
impractical for use on a global scale when identifiers are based on personal domain names
(potentially millions of them). ID4me, on the other hand, supports multiple identity providers easily
and transparently; given an identifier, it is possible to discover which identity authority is handling it
through a DNS query, and thus contact the correct server for authorization; the DNS-based
mechanism can easily and efficiently be managed by a domain name registrar or ISP that already
manages the user’s domain. All ID4me identifiers, no matter which authority released them, can be
used as part of a single federated identity system.

2. The flexibility of OpenID Connect has been leveraged to run the different standard endpoints of the
identity provider at different entities: the “identity authority” and the “identity agent”, which also
naturally mirror the traditional subdivision of roles in the domain name industry. More precisely, the
identity authority fulfills all the responsibilities that the OpenID Connect standard attributes to the
identity provider, except managing the actual user claim values; to delegate this role to the agent
while keeping compatibility with OpenID Connect, ID4me makes use of the OpenID Connect
mechanism of “distributed claims”, and the identity agent plays the role of a claims provider.

3. As ID4me is a federated system, it becomes much more important to establish from the start a
common ontology and standard naming and meanings for all the claims that could be attributed to
a user. To this purpose, ID4me aims to define a much longer list of standard claim names, covering
many possible attributes that can be useful to different industries and in different use cases, ranging
from flight seat preferences to social network handles. However, identity authority and agents are
only required to support the basic set of claims from OpenID Connect, and users are not required to
provide any claim – an ID4me identifier could be associated to no claims whatsoever, and just be
used as an empty and anonymous login handle. If the users and actors want to exchange further
claims, though, they are required to use the additional claim names that ID4me will standardize.

4. ID4me introduces the option of callbacks from the identity authority and from the relying party to
the identity agent. If supported, they allow the agent to show a history of logins and to track potential
improper uses.

5. ID4me adds an explicit mechanism to handle the request and provision of granular consent by the
user before any information is shared with a relying party, complying with the principles of privacy
laws in Europe and in many other countries. Also, requesting parties can (and should) provide the
reasons why they need some personal data, so that the user can perform a real informed consent.
While OpenID Connect also mentions that user consent should be obtained, there is no explicit
mechanism in the standard to transmit this consent to other parties.

6. The OpenID Connect standard mandates the use of HTTPS, but does not mandate the use of DNSSEC
and DANE to secure that connections cannot be intercepted and diverted via DNS-based attacks –
this is an addition in ID4me.

 Technical overview – v1.3

 12

DRAFT PUBLIC STANDARDS

The intent of the ID4me project is to provide a standard for a “public identity infrastructure” that can be
widely used over the Internet, without entry barriers and intellectual property restrictions. We believe that
the Internet needs an identity management system which is open, federated and not controlled by a single
company – so all our specifications are public.

For the time being, we have submitted two independent Internet drafts to the IETF, so that they are archived
and publicly accessible:

1. A general description of the architecture of the system: “An architecture for a public identity
infrastructure based on DNS and OpenID Connect”, https://datatracker.ietf.org/doc/draft-bertola-
dns-openid-pidi-architecture/?include_text=1

2. A specific standard for the newly created alternative discovery process based on the DNS: “OpenID
Connect DNS-based discovery”, https://datatracker.ietf.org/doc/draft-sanz-openid-dns-
discovery/?include_text=1

We welcome discussion and contributions to these drafts, and we are ready to work within the IETF, the
OpenID Foundation and other relevant standardization organizations to ensure that ID4me specifications are
as public and shared as possible.

SANDBOX AND DEMO ENVIRONMENT

The ID4me association, thanks to the contribution of a few founding members, offers a live demonstration
of the platform that allows anyone to create an identifier and use it to access a test webmail service.

First of all, you have to choose the identifier you want to use, inside a DNS zone that you have access to, such
as example.org. Pick any username you like, as long as it is a valid DNS hostname (we recommend ASCII-only
for the time being); your identifier will then be myname.example.org.

Then, connect to https://identityagent.de/register, enter your identifier, submit it and then select the
“Manual DNS” option; the demo identity agent will reply by giving you the two TXT DNS records that you
have to create, one for _openid.myname.example.org and another one for _acme-
challenge.myname.example.org. Create the two records on the authoritative name server for example.org,
refresh the zone and then get back to the identity agent to complete the challenge and the creation process;
you will then be redirected to the demo identity authority, where you will be prompted to set your password.

At this point in time, the identifier is up and running, but you should first of all associate some claims
(information) to it, through the interface at the identity agent. You can log into the demo agent and authority
with the identifier you just created, at these URLs:

https://identityagent.de/ - Interface at the demo identity agent to manage your claims and login history
https://auth.freedom-id.de/dashboard - Interface at the demo identity authority to manage your credentials
and consent choices

You can then use your identifier for registration and login at any ID4me compliant online service, starting
from the following ones:

https://hermes.open-xchange.com/appsuite/ - Demo webmail and collaboration platform

Technical overview – v1.3

 13

All the updated details on the demo environment, including endpoints that you can use to test your
implementation, can be found on the ID4me website at https://id4me.org/documents .

 Technical overview – v1.3

 14

Com
plete ID4m

e login flow
 – Part 1

Technical overview – v1.3

 15

Com
plete ID4m

e login flow
 – Part 2

