
Fosdem 2018

Building a WebRTC Gateway
Experiment with WebRTC native API

https://github.com/jchavanton/rtc_gw
Julien Chavanton

Lead software engineer - voice routing @ flowroute.com
01/24/2018

https://github.com/jchavanton/rtc_gw

WebRTC Gateway
bridging WebRTC with VoIP

➔ WebRTC endpoints requires HTTPS, DTLS/SRTP, multiplexing of RTP/RTCP
and support for ICE.

➔ VoIP does not require any of this, SIP is prefered for signaling and encryption
is mostly using TLS on signaling socket and SRTP

WebRTC is focussing on connecting browsers running on laptops and mobile
phones, achieving QoS best effort can be more challenging because users are
everywhere connected over wireless networks.

With VoIP we do not always need to care about this, we sometimes assume that
the users or switches are well connected to the Internet.

Using WebRTC to build a Gateway? 1/3
Native API (C++11) is evolving to accommodate out of browser usage

WebRTC update October 2017 - Path to 1.0 Update

● "A shift of what was originally a web based API platform for real time communication

into developers adopting it on mobile and building natively for it"

● “Injectable audio codecs and embedded device for the native environment”

● “Our mission: To enable rich, high-quality RTC applications to be developed for the

browser, mobile platforms, and IoT devices, and allow them all to communicate via a

common set of protocols.”

WebRTC provides complex signal processing solutions, example :

AEC3 (Acoustic Echo Canceler) several improvements and testing being done on millions of

calls. Other media libraries like PJMedia and MediaStreamer2 are using part of code.

 Example of integration of AEC-DA to mediastreamer2 (not official and outdated)
 https://github.com/jchavanton/ms-aec-webrtc

However the fork makes it more expensive to test, maintain and update ...

https://www.youtube.com/watch?v=PEXnbTyygi4&feature=youtu.be
https://github.com/jchavanton/ms-aec-webrtc
https://www.youtube.com/watch?v=PEXnbTyygi4&feature=youtu.be

Using WebRTC to build a Gateway? 2/3

NetEQ . The adaptive jitter buffer in WebRTC that can do fast accelerate, expand, clock

skew compensation, etc.

● Required to provide QoS best effort when facing Jitter

● Such Jitter Buffer Management (JBM) can be complex to implement and to test

Example using the native API you can configure it

Microsoft Edge compatibility, support for edge ORTC

RTC Configuration Example
webrtc::PeerConnectionInterface::RTCConfiguration config;
config.audio_jitter_buffer_max_packets = 100;
config.audio_jitter_buffer_fast_accelerate = true;
Result in:
(webrtcvoiceengine.cc:511): NetEq capacity is 100
(webrtcvoiceengine.cc:517): NetEq fast mode? 1

commit 7aee3d538c548a66843efcf415c9ac50274846eb
 Fix ortc_api circular deps.
 This will help keep ortc dependencies clean in the
future ...

Using WebRTC to build a Gateway? 3/3

void UpdateAllowedBitrateRange() {

// Note: This is an early experiment currently only supported by Opus.
 if (send_side_bwe_with_overhead_) {
 const int max_packet_size_ms =
 WEBRTC_OPUS_SUPPORT_120MS_PTIME ? 120 : 60;

BWE (BandWidth Estimator) for audio using adaptive codecs functionality

chrome was planning to use bandwidth estimation also to decide the audio
bitrate to send (Planned for version 58).

compatible and symmetric behavior

 (same code == same feature set on each side)

However I did not test it and it is still considered experimental

src/media/engine/webrtcvoiceengine.cc

Current State of Work In Progress

MediaStreamer2

WebRTC

?

RTC_GW Source code

 https://github.com/jchavanton/rtc_gw

The source code is mainly an experiment to verify what can be done with
the current API or what could be missing (it does contain several quick
and dirty hacks).

The code can be build from a separate set of files and will work without
any modification to WebRTC (no need to fork), we can use the latest
version and it should work as the API remain stable.

peer_connection_listener.cc
peer_connection_listener.h

Forked from peer_connection_client application
but now act as a server to request
creation/destruction of peer connections

conductor.cc
conductor.h

Forked from the peer_connection_client
sample application with several modifications

audio_device_module.cc
audio_device_module.h

Fork of file_audio_device.cc refactored to
become an audio_device_module and include
the audio_device_buffer

main.cc

https://github.com/jchavanton/rtc_gw

Live Demo

Signaling … JSEP, ICE Trickle and SIP

When using the Native API we still need to handle the SDP exchange and
modifications as needed by using Javascript Session Establishment Protocol directly
from C++

Interactive Connectivity Establishment (ICE) is automatically triggered and
on a server we probably always know in advance which network interface we want to
use, we can simply control it and remove the candidate we do not want.

We can also choose to benefit from :
Trickle ICE: Incremental Provisioning of Candidates However this requires more
signaling after the Offer/Answer to exchange more candidate as they are discovered.
We sometime have to wait after STUN requests

Unfortunately this is not supported in SIP (not defined in any RFC) so I add to spend
time to disable it, simply waiting after the candidate of the interface configured is found

Conductor::OnIceCandidate

https://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03#page-4
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/draft-ietf-ice-trickle-15

Create an Audio Device Module

In this AudoiDeviceModule, the constructor will automatically create an

AudioDeviceBuffer and attach it

https://github.com/jchavanton/rtc_gw/blob/master/audio_device_module.cc
https://github.com/jchavanton/rtc_gw/blob/master/audio_device_module.h

Inherit from the abstract base class AudioDeviceModule and implement
all the methods required.

Audio_device_buffer_ = new webrtc::AudioDeviceBuffer();
AttachAudioBuffer(Audio_device_buffer_);

class FileAudioDevice : public webrtc::AudioDeviceModule

https://github.com/jchavanton/rtc_gw/blob/master/audio_device_module.cc
https://github.com/jchavanton/rtc_gw/blob/master/audio_device_module.h

Use an Audio Device Module

https://github.com/jchavanton/rtc_gw/blob/master/conductor.cc

Use the version CreatePeerConnectionFactory that let you specify which ADM

“Audio device module” you want to use.

Inherit from the abstract base class AudioDeviceModule and implement all the methods required.

network_thread_ = new rtc::Thread();
rtcgw::FileAudioDevice *audio_device_ = new
rtcgw::FileAudioDevice("/audio/input_48K_16bits_pcm.raw",
 "/audio/recording.raw");
network_thread_->Start();

peer_connection_factory_ = webrtc::CreatePeerConnectionFactory(
 network_thread_, // specify : network, worker and signaling thread
 rtc::Thread::Current(), // Maybe something to fix here, using the same thread
 rtc::Thread::Current(), // because FileAudioDevice must run from the thread
 Audio_device_, // from which it was instantiated
 webrtc::CreateBuiltinAudioEncoderFactory(), // seems like we could provide our own
 webrtc::CreateBuiltinAudioDecoderFactory(), // factory to have more control over the
 Nullptr, // Video // Codec, not tested.
 Nullptr // Video
);

https://github.com/jchavanton/rtc_gw/blob/master/conductor.cc

Signaling Server using a Kamailio module

 https://github.com/jchavanton/kamailio_mod_rtcgw

Example of Kamailio config usage :

loadmodule "rtc_gw.so"
modparam("rtc_gw", "server_address", "127.0.1.102");

if(is_method("INVITE") && !has_totag()) {
rtc_sdp_offer();
exit;

}
if(is_method("BYE")){
 rtc_bye();
 sl_send_reply("200", "OK");
}

https://github.com/jchavanton/kamailio_mod_rtcgw

Measurements Metrics and statistics

 grep kStats ./api/statstypes.cc | wc -l

 153 Metrics in this file

{ StatsReport::kStatsValueNameCurrentDelayMs, info.delay_estimate_ms },
{ StatsReport::kStatsValueNameDecodingCNG, info.decoding_cng },
{ StatsReport::kStatsValueNameDecodingCTN, info.decoding_calls_to_neteq },
{ StatsReport::kStatsValueNameDecodingCTSG,info.decoding_calls_to_silence_generator },
{ StatsReport::kStatsValueNameDecodingMutedOutput,info.decoding_muted_output },
{ StatsReport::kStatsValueNameDecodingNormal, info.decoding_normal },
{ StatsReport::kStatsValueNameDecodingPLC, info.decoding_plc },
{ StatsReport::kStatsValueNameDecodingPLCCNG, info.decoding_plc_cng },
{ StatsReport::kStatsValueNameJitterBufferMs, info.jitter_buffer_ms },
{ StatsReport::kStatsValueNameJitterReceived, info.jitter_ms },
{ StatsReport::kStatsValueNamePacketsLost, info.packets_lost },
{ StatsReport::kStatsValueNamePacketsReceived, info.packets_rcvd },
{ StatsReport::kStatsValueNamePreferredJitterBufferMs,info.jitter_buffer_preferred_ms },

What's Next ?

Complete call bridging
Possible option 1 : disable RTCP MUX, DTLS, and control ICE to create another WebRTC call leg

compatible with VoIP.

Possible option 2 : Create a MediaStreamer2 module and use it in conjunction with oRTP to

create a standard simple media call leg to interface the “legacy” VoIP.

See an example of the Kamailio module doing bridging/transcoding using

MediaStreamer2/oRTP:

 Could be simple and efficient, I did an experimented last year

 Kamailio media processing module

Dig more on QoS functionality & testing
Test Various scenarios of Jitter + packet loss and verify

Experiment with BWE for audio and adaptive codec behavior

Using PESQ to test

POLQA licence ...

webrtc/tree/master/modules/audio_processing/test/py_quality_assessment

https://github.com/jchavanton/rtp_media_server
https://github.com/webrtc-uwp/webrtc/tree/master/modules/audio_processing/test/py_quality_assessment

Bridge call using MediaStreamer2/oRTP ?
http://www.belledonne-communications.com/mediastremer2.html

Example showing how MediaStreamer2 can be convenient and high level

int create_call_leg_media(call_leg_media_t *m, str *callid){
 m->ms_factory = rms_create_factory();
 m->callid = callid;
 // create caller RTP session
 m->rtps = ms_create_duplex_rtp_session(m->local_ip, m->local_port, m->local_port+1, ms_factory_get_mtu(m->ms_factory));
 rtp_session_set_remote_addr_full(m->rtps, m->remote_ip, m->remote_port, m->remote_ip, m->remote_port+1);
 rtp_session_set_payload_type(m->rtps, m->pt->type);
 rtp_session_enable_rtcp(m->rtps,FALSE);
 // create caller filters : rtprecv1/rtpsend1/encoder1/decoder1
 m->ms_rtprecv = ms_factory_create_filter(m->ms_factory, MS_RTP_RECV_ID);
 m->ms_rtpsend = ms_factory_create_filter(m->ms_factory, MS_RTP_SEND_ID);
 m->ms_encoder = ms_factory_create_encoder(m->ms_factory, m->pt->mime_type);
 m->ms_decoder = ms_factory_create_decoder(m->ms_factory, m->pt->mime_type);
 /* set filter params */
 ms_filter_call_method(m->ms_rtpsend, MS_RTP_SEND_SET_SESSION, m->rtps);
 ms_filter_call_method(m->ms_rtprecv, MS_RTP_RECV_SET_SESSION, m->rtps);
 return 1;
}

int rms_bridge(call_leg_media_t *m1, call_leg_media_t *m2) {
 MSConnectionHelper h;
 m1->ms_ticker = rms_create_ticker(NULL);
 // direction 1
 ms_connection_helper_start(&h);
 ms_connection_helper_link(&h, m1->ms_rtprecv, -1, 0);
 ms_connection_helper_link(&h, m2->ms_rtpsend, 0, -1);
 // direction 2
 ms_connection_helper_start(&h);
 ms_connection_helper_link(&h, m2->ms_rtprecv, -1, 0);
 ms_connection_helper_link(&h, m1->ms_rtpsend, 0, -1);

 ms_ticker_attach_multiple(m1->ms_ticker, m1->ms_rtprecv, m2->ms_rtprecv, NULL);
 return 1;
}

Thank you for listening !
Looking forward working with you on Free Software

Searching for a working WebRTC Gateway ?
you may want to look at :

Freeswitch, Janus, Kamailio/RTP Engine, Asterisk,
SEMS, ...

Thanks to Flowroute for sponsoring my trip to Fosdem and

Other Free software events !

Speaking about them and audio quality, why would I recommend using Flowroute as a

SIP trunk carrier in the US ?

Because it is the only carrier (as far as I know) that will give you direct carrier media

connection, therefore you get the low latency, high quality path for you media !

Thanks to :

Claude Lamblin @ Orange Lannion (Feedback on NetEQ)

William King and Maria Bermudez @ Flowroute (Help and support)

