
Connecting LLVM with a WCET tool

Rick Veens
rickveens92@gmail.com

FOSDEM 2018 (4-2-2018)
10:35 – 11:05

 2

“Connecting LLVM with a WCET tool”
talk outline

● What is WCET? WCET analysis?
● Why connect LLVM with a WCET tool?
● What tool to pick? (SWEET)
● Approach to connecting SWEET and LLVM
● WCET for the ARM Cortex-M3
● Conclusions

 3

What is WCET?

 4

What is WCET?

● Worst Case Execution Time:
longest path in the code

 5

How to determine WCET?

● Running code, measuring?

● No There are too many paths in non-trivial code

e.g. foo(unsigned a, unsigned b);
2^32 * 2^32 paths.

● Static analysis is the answer. Make use of
abstract interpretation

 6

WCET using static-analysis

 7

Why connect LLVM with a
WCET tool?

 8

Why connect LLVM with a WCET tool?

1) Provide WCET analysis alongside compilation

2) Re-use information about architecture (i.e. TableGen)

● Why not add WCET analysis to LLVM, instead of
tool?
– WCET analysis is not easy (Abstract Interpretation)
– Why do the same work again?
– To test if LLVM has enough info in TableGen.

 9

What tool to pick?
(SWEET)

 10

What tool to pick? (SWEET)

● SWEdish Execution Time
● Open-source tool
● Has interface language ALF
● Other tools considered:

Bound-T, OTAWA, Hepatane, Absint aiT

 11

How to use SWEET

● SWEET requires cycle model and semantics
– Cycle Model: How many cycles is this basic-block?

– Semantics : Register changes, control flow etc

ALF

SWEET WCETbinary Semantics

CM

Instructions per BB

CFG

 12

Example of ALF code

Example of addition-instruction of two registers
(R0, R1)

 13

Approach to connecting
SWEET and LLVM

 14

Approach to connecting SWEET and LLVM

● Output ALF from LLVM
● What ALF? Use info from TableGen
● Output from MI, just before conversion to MC.

(addPreEmitPass of TargetPassConfig)

 15

How to determine ALF per instruction

● TableGen back-end that generates ALF based
on DAG-pattern
– Generate function that determines ALF code for

given MachineInstr object.

● Most instructions have a DAG-pattern
● Condition flags are assumed to be N, Z, C, V

 16

WCET for the ARM Cortex-
M3

 17

Generating for ARM Cortex-M3

● 52 of 86 Thumb1 covered (14 custom)
● Simple cycle model
● QEMU simulator used to test
● Discovered issues:

1) Not all code available in LLVM: libgcc

2) Globals are allocated by the linker, addr not known
by LLVM

 18

Conclusions

 19

Conclusions

● Goal: Add WCET analysis with the SWEET tool
● SWEET runs on ALF code
● Using TableGen to generate ALF

– Generated ALF for ARM Cortex-M3 for some
programs

– Condition flags not in TableGen

– LLVM does not have all information (libgcc, globals)

 20

Future work

● TableGen back-end uses fixed DAG-patterns
e.g. (set .. (add … …))

● Instruction delay-slots not considered
● ARM Cortex-M3 instructions only partially

finished
● Hand-write libgcc functions in ALF

 21

Some links

● Code of LLVM with WCET additions
https://github.com/rveens/LLVM-WCET-SWEET

● Vim syntax highlighting for ALF
https://github.com/rveens/alf-vim

● SWEET homepage
http://www.mrtc.mdh.se/projects/wcet/sweet/

● ALF spec
http://www.es.mdh.se/pdf_publications/1138.pdf

https://github.com/rveens/LLVM-WCET-SWEET
https://github.com/rveens/alf-vim
http://www.mrtc.mdh.se/projects/wcet/sweet/
http://www.es.mdh.se/pdf_publications/1138.pdf

 22

end of presentation

 23

How to determine ALF per instruction

● Considered patterns:
● Note:

operators such as
add, sub, ld etc
are defined in
TargetSelectionDAG.td

 24

LLVM TableGen example

def tADC : // A8.6.2
 T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:
$Rm), IIC_iALUr,

 "adc", "\t$Rdn, $Rm",
 [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>,

Sched<[WriteALU]>;

def tADC { // Instruction InstTemplate InstThumb
….T1sItDPEncode Sched
 field bits<32> Inst = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0, 1, ... };
 dag OutOperandList = (outs tGPR:$Rdn, s_cc_out:$s);
 dag InOperandList = (ins tGPR:$Rn, tGPR:$Rm, pred:$p);
 string AsmString = "adc${s}${p} $Rdn, $Rm";
 list<dag> Pattern = [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))];
 list<Register> Uses = [CPSR];
 list<Register> Defs = [];
 bit isReturn = 0;
 bit isBranch = 0;
 bit isIndirectBranch = 0;
 bit isCompare = 0;
 bit isMoveImm = 0;
 bit isBitcast = 0;
 bit isSelect = 0;
 bit isBarrier = 0;
 bit isCall = 0;
 bit isAdd = 1;
[..]

 25

SWEET Abstract Execution

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

