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“Connecting LLVM with a WCET tool” 
talk outline

● What is WCET? WCET analysis?
● Why connect LLVM with a WCET tool?
● What tool to pick? (SWEET)
● Approach to connecting SWEET and LLVM
● WCET for the ARM Cortex-M3
● Conclusions
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What is WCET?
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What is WCET?

● Worst Case Execution Time: 
longest path in the code
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How to determine WCET?

● Running code, measuring?

● No There are too many paths in non-trivial code

e.g. foo(unsigned a, unsigned b); 
2^32 * 2^32 paths.

● Static analysis is the answer. Make use of 
abstract interpretation
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WCET using static-analysis
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Why connect LLVM with a 
WCET tool?
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Why connect LLVM with a WCET tool?

1) Provide WCET analysis alongside compilation

2) Re-use information about architecture (i.e. TableGen)

● Why not add WCET analysis to LLVM, instead of 
tool?
– WCET analysis is not easy (Abstract Interpretation)
– Why do the same work again?
– To test if LLVM has enough info in TableGen.
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What tool to pick? 
(SWEET)
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What tool to pick? (SWEET)

● SWEdish Execution Time
● Open-source tool
● Has interface language ALF
● Other tools considered:

Bound-T, OTAWA, Hepatane, Absint aiT
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How to use SWEET

● SWEET requires cycle model and semantics
– Cycle Model: How many cycles is this basic-block?

– Semantics : Register changes, control flow etc

ALF

SWEET WCETbinary Semantics

CM

Instructions per BB

CFG
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Example of ALF code

Example of addition-instruction of two registers 
(R0, R1)
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Approach to connecting 
SWEET and LLVM
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Approach to connecting SWEET and LLVM

● Output ALF from LLVM
● What ALF? Use info from TableGen 
● Output from MI, just before conversion to MC.

(addPreEmitPass of TargetPassConfig)
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How to determine ALF per instruction

● TableGen back-end that generates ALF based 
on DAG-pattern
– Generate function that determines ALF code for 

given MachineInstr object.

● Most instructions have a DAG-pattern
● Condition flags are assumed to be N, Z, C, V
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WCET for the ARM Cortex-
M3
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Generating for ARM Cortex-M3

● 52 of 86 Thumb1 covered (14 custom)
● Simple cycle model
● QEMU simulator used to test
● Discovered issues:

1) Not all code available in LLVM: libgcc

2) Globals are allocated by the linker, addr not known 
by LLVM
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Conclusions
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Conclusions

● Goal: Add WCET analysis with the SWEET tool
● SWEET runs on ALF code
● Using TableGen to generate ALF

– Generated ALF for ARM Cortex-M3 for some 
programs

– Condition flags not in TableGen

– LLVM does not have all information (libgcc, globals)
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Future work

● TableGen back-end uses fixed DAG-patterns
e.g. (set .. (add … … ) ) 

● Instruction delay-slots not considered
● ARM Cortex-M3 instructions only partially 

finished
● Hand-write libgcc functions in ALF
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Some links

● Code of LLVM with WCET additions
https://github.com/rveens/LLVM-WCET-SWEET

● Vim syntax highlighting for ALF
https://github.com/rveens/alf-vim

● SWEET homepage
http://www.mrtc.mdh.se/projects/wcet/sweet/

● ALF spec
http://www.es.mdh.se/pdf_publications/1138.pdf

https://github.com/rveens/LLVM-WCET-SWEET
https://github.com/rveens/alf-vim
http://www.mrtc.mdh.se/projects/wcet/sweet/
http://www.es.mdh.se/pdf_publications/1138.pdf
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end of presentation
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How to determine ALF per instruction

● Considered patterns:
● Note:

operators such as
add, sub, ld etc
are defined in
TargetSelectionDAG.td 
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LLVM TableGen example

def tADC :                      // A8.6.2
  T1sItDPEncode<0b0101, (outs tGPR:$Rdn), (ins tGPR:$Rn, tGPR:
$Rm), IIC_iALUr,

   "adc", "\t$Rdn, $Rm",
   [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))]>, 

Sched<[WriteALU]>;

def tADC {      // Instruction InstTemplate InstThumb 
….T1sItDPEncode Sched
 field bits<32> Inst = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0, 1, 0, 1, ... };
 dag OutOperandList = (outs tGPR:$Rdn, s_cc_out:$s);
 dag InOperandList = (ins tGPR:$Rn, tGPR:$Rm, pred:$p);
 string AsmString = "adc${s}${p}       $Rdn, $Rm";
 list<dag> Pattern = [(set tGPR:$Rdn, (adde tGPR:$Rn, tGPR:$Rm))];
 list<Register> Uses = [CPSR];
 list<Register> Defs = [];
 bit isReturn = 0;
 bit isBranch = 0;
 bit isIndirectBranch = 0;
 bit isCompare = 0;
 bit isMoveImm = 0;
 bit isBitcast = 0;
 bit isSelect = 0;
 bit isBarrier = 0;
 bit isCall = 0;
 bit isAdd = 1;
[..]
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SWEET Abstract Execution
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