Bulilding high
performance network
functions 1n VPP

Ole Trgan, ot@cisco.com, VPP contributor
FOSDEM 2018

This talk?

® Goal: Make you 1nto VPP developers

® Agenda:
VPP architecture
An example decomposed VPP VNF

implementation

What’s this NFV
malarkey anyway?

Orchestration
oo e e
Os-Ma
OSS/BSS } * | Orchestrator
Se-Ma
i Service, VNF aqd !nfrastructure _|_§
Description | Or-Vnfm
EMS 1 EMS 2 EMS 3 | Ve-Vnfmi
| : ; : —+— L | VNF
i == -+ = i { | Manager(s)
; VNF 1 VNF 2 VNF 3 i ; "
S — I """"""""""""" Vn-Nf I Vi-Vnfm
NFVI ;
Virtual Virtual Virtual
Computing Storage Network
— Nf-Vi i | Virtualised
Virtualisation Layer | Infrastructure
Vl-Ha I Manager(s)
Hardware resources
«++{ | Computing Storage Network :
Hardware Hardware Hardware ——

NFV Management and

o—=& Execution reference points

<)+ Other reference points

Or-Vi

w—t= Main NFV reference points

Approach #1

® Take your hardware appliance, port 1t to
Linux, stuff 1t i1nto a VM. Done.

® Disaggregation: Take each one of all the
features on the router’s datapath, stuff 1t
into a separate VM and 1nvent some
marvellous way of chaining them all back
together.

Approach #2

¢ Decomposition / Disaggregation

® Deployment model:
Bare-metal, VM, container, (unikernel)

o
-
."

VPP based VNFs .

® Control plane?

VPP based VNFs\\,

» I - “'\
W '{ I LY l

What 1s VPP?

A framework for building forwarding functions.
Written 1n C
Multi-core, Portable. x86, ARM, PowerPC

Data-plane / Control-plane separation
High performance shared memory API
Debug CLI

Punt path to Linux kernel / Control plane apps.
Tracing, logging, counters

Scheduler, lightweight processes

Host stack with own UDP/TCP implementation

Drivers for: AF PACKET, TAP, MEMIF, DPDK..

VPP highlights

e Vector packet processing. As opposed to scalar packet processing. A vector of packets are
processed through a graph of forwarding functions. This ensures optimal usage of the
instruction cache.

® Modern, lock-less scalable data structures. A use of indices instead of pointers for direct
lookup and robustness (as opposed to data structures chasing pointers). Effective use of a
modern CPUs memory hierarchy and modern CPU instructions (e.g. AVX2).

e F'orwarding as a graph. Where each graph node is independent and does a limited amount of work
on a vector of packets. Which ensures a very high hit rate on the instructions cache.

e Plugins as first-class citizens. Allows for a completely bespoke forwarding plane, by
dynamically adjusting the forwarding graph. The graph can be custom built for the application,
the software image and running application need only contain the set of graph nodes used. And
the graph node can be developed using VPP libraries outside or inside of the main VPP software
repository.

e Performance. Linear scale by number of cores. 2.8 instructions per cycle (on Intel Xeon
Broadwell), very efficient use of a CPUs instruction cache and memory hierarchy.

® Robust and secure. VPP processes packets with a consistent latency and does not have a
hierarchy of gradually slower and more feature complete forwarding paths (slow-path, fast-path
as in IOS).

® Super programmable data plane. VPP is already integrated with ML2, ODL, ACI. It offers through
its middleware agent interfaces over NETCONF/YANG, REST. It has direct language bindings in
Python, Lua, Java and C. It is programmable over GRPC. Everything is done over APIs. The APIs
are the first class citizens.

¢ New shared memory interfaces for container to container communication and from container to VPP

10

Universal Dataplane: Features

11

VPP — How does 1t work?
Compute Optimized SW Network Platform

G Packet processing is e .. packets move .. graph nodes are optimized
decomposed through to fit inside the instruction
into a directed graph of nodes graph nodes in vector cache ...

**vhost- - af-packet- . .
St Brhertet dpdicinput Packet 0 — Microprocessor
: \ J Packet 1
ethernet- -
o Packet 2 © nstruction Cache
' | Packet 3
P arp-dp-input 12-input ip4-input ipB-input Packet 4
p‘lllyun ...-NO-
mpls-input ’—‘ checksum Packet 5 e Data CaChe
Ipn“‘;;:l(i)t(():l;l;?_ ipd-lookup* Packet 6
‘ | ‘ \ Packet 7
ripls policy pd-load: ip4 rewrie- | _ipd- Packet 8 e ... packets are pre-fetched
enca alance ransi miacnain .
i | | Packet 9 into the data cache.
interface- Packet 10

output

* Each graph node implements a “micro-NF”, a “micro-NetworkFunction” processing packets.

Makes use of modern Intel® Xeon® Processor micro-architectures.
Instruction cache & data cache always hot => Minimized memory latency and usage.

VNF: MAP/ILW46

IWwAFTR NFV Function
Performs ingress routing
based on DSTv4 ADDR+DstL4

port

Infrastructure
Cloud /
Datacenter

Home
Network

>z
CPE (Port

restricted
NAPT44)

v4
Internet

host

IPv4 in IPV6
Softwire Tunnel

13

MAP VPP VNEF

-~ -

‘,‘I N4 \\
m' ragmand Sachn
/‘J‘-_fﬂ“) Fragment zach
/ © auterng | Fragmant cache
—F \
.
pee f h
() rutows)
IPv4 FIB MAP DB Hules IPvE FIB
20001/32 | » #0 2001:db8::1 | ———{ /0 -> alh(
| 20002/32 | » #1 2001:dbC::1 2007 :aaaa::1->MAP
20003/32 | » #2 2001:cba::1 —2001:bbob::1
#3
20.0.0.20/32 > #7
30.0.0.0/24 » #8
in

14

Done. Questions?

® Code: https://github.com/FDio/vpp

e MAP VNF: 100s of line of forwarding code.
1000000s line of control plane.

® Does 1t need to be so darn complicated?

15

