
Building high
performance network
functions in VPP

Ole Trøan, ot@cisco.com, VPP contributor 
FOSDEM 2018

1

2

This talk?

•Goal: Make you into VPP developers

• Agenda:  
VPP architecture  
An example decomposed VPP VNF
implementation

3

What’s this NFV
malarkey anyway?

4

5

Approach #1

•Take your hardware appliance, port it to
Linux, stuff it into a VM. Done.

• Disaggregation: Take each one of all the
features on the router’s datapath, stuff it
into a separate VM and invent some
marvellous way of chaining them all back
together.

6

Approach #2

•Decomposition / Disaggregation

• Deployment model:  
Bare-metal, VM, container, (unikernel)

• Control plane?

7

8

What is VPP?
•A framework for building forwarding functions.

• Written in C

• Multi-core, Portable. x86, ARM, PowerPC

• Data-plane / Control-plane separation  
High performance shared memory API  
Debug CLI

• Punt path to Linux kernel / Control plane apps.

• Tracing, logging, counters

• Scheduler, lightweight processes

• Host stack with own UDP/TCP implementation

• Drivers for: AF_PACKET, TAP, MEMIF, DPDK…

9

VPP highlights
•Vector packet processing. As opposed to scalar packet processing. A vector of packets are
processed through a graph of forwarding functions. This ensures optimal usage of the
instruction cache.

•Modern, lock-less scalable data structures. A use of indices instead of pointers for direct
lookup and robustness (as opposed to data structures chasing pointers). Effective use of a
modern CPUs memory hierarchy and modern CPU instructions (e.g. AVX2).

•Forwarding as a graph. Where each graph node is independent and does a limited amount of work
on a vector of packets. Which ensures a very high hit rate on the instructions cache.

•Plugins as first-class citizens. Allows for a completely bespoke forwarding plane, by
dynamically adjusting the forwarding graph. The graph can be custom built for the application,
the software image and running application need only contain the set of graph nodes used. And
the graph node can be developed using VPP libraries outside or inside of the main VPP software
repository.

•Performance. Linear scale by number of cores. 2.8 instructions per cycle (on Intel Xeon
Broadwell), very efficient use of a CPUs instruction cache and memory hierarchy.

•Robust and secure. VPP processes packets with a consistent latency and does not have a
hierarchy of gradually slower and more feature complete forwarding paths (slow-path, fast-path
as in IOS).

•Super programmable data plane. VPP is already integrated with ML2, ODL, ACI. It offers through
its middleware agent interfaces over NETCONF/YANG, REST. It has direct language bindings in
Python, Lua, Java and C. It is programmable over GRPC. Everything is done over APIs. The APIs
are the first class citizens.

•New shared memory interfaces for container to container communication and from container to VPP

10

Universal Dataplane: Features

11

VPP – How does it work?
Compute Optimized SW Network Platform

1 Packet processing is
decomposed
into a directed graph of nodes
…

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Packet 7

Packet 8

Packet 9

Packet 10

… packets move
through  
graph nodes in vector
…

2

Microprocessor

… graph nodes are optimized  
to fit inside the instruction
cache …

… packets are pre-fetched  
into the data cache.

 Instruction Cache3

Data Cache4

3

4

Makes use of modern Intel® Xeon® Processor micro-architectures.  
Instruction cache & data cache always hot ➔ Minimized memory latency and usage.

vhost-user-
input

af-packet-
input dpdk-input

ip4-lookup-
mulitcast ip4-lookup*

ethernet-
input

mpls-input
lldp-input

arp-inputcdp-input
...-no-

checksum

ip6-inputl2-input ip4-input

ip4-load-
balance

mpls-policy-
encap

ip4-rewrite-
transit

ip4-
midchain

interface-
output

* Each graph node implements a “micro-NF”, a “micro-NetworkFunction” processing packets.

VNF: MAP/LW46

13

MAP VPP VNF

14

Done. Questions?

•Code: https://github.com/FDio/vpp

• MAP VNF: 100s of line of forwarding code.
1000000s line of control plane.

• Does it need to be so darn complicated?

15

