
 

 

This presentation is licensed under a Creative Commons Attribution 4.0 International License

Will it blend?
A comparison of oVirt, OpenStackⓇ 
                    and kubernetes schedulers

Martin Sivák
Principal Software Engineer
Red Hat Czech

3th of Feb 2018

https://creativecommons.org/licenses/by/4.0/


 

Agenda

Anatomy of a scheduler
- Goals
- Design considerations
- The three schedulers

Architecture similarities and differences
- Resource tracking
- Scheduling algorithm
- Balancing and preemption

Highlights and ideas to share

2



 

Goals of a scheduler

Find a place with enough resources
to start the given VM[1] ...

… and make sure it keeps running
… and make sure it handles the load
… and keep the power consumption low
… and ...

[1] or container

3



 

Design considerations

- Size of cluster (~ hundreds of nodes)
- Deterministic algorithms
- Migrations and balancing
- Homogeneous cluster vs. heterogeneous cluster

- Pet vs. cattle

4



 

Scheduler as a function

AVM

CFG

NODE

5

RESOURCES



 

The schedulers

6



 

Number comparison

oVirt OpenStack kubernetes

~ Max nodes 200 ~300 5000

Language Java Python Go

Load type pet VMs cattle VMs containers

Resource 
tracking

pending + 
stats

placement 
service

pod spec in 
etcd

Active 
schedulers

1 1 or more 1 or more

7

https://kubernetes.io/docs/admin/cluster-large/
https://youtu.be/LVkknWuGq_I?t=26m50s
https://youtu.be/LVkknWuGq_I?t=26m50s
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/


 

 

8

Resource tracking



 

Resource tracking

oVirt
- pending resources are tracked,

free resources come from reports

management   node

9

SIMPLIFIED!



 

Resource tracking

kubernetes
- allocated resources are part of Pod spec,

free = total - ∑spec

API

management   node

10

SIMPLIFIED!

https://kubernetes.io/docs/api-reference/v1.9/#pod-v1-core


 

Resource tracking

OpenStack
- a placement service handles tracking

and atomic resource reservation

placement

management   node

11

SIMPLIFIED!

https://www.openstack.org/videos/boston-2017/scheduler-wars-a-new-hope


 

 

12

The Algorithm



 

Algorithm - not rocket science

Filter

Map

Reduce

Remove all nodes that do not 
satisfy hard constraints

Compute score, typically based on 
node load and free resources

Select the best node

yes / no

y = f(x)

x | max(y)

13



 

Filtering

Filter out incompatible nodes

Typical filters:
- CPU compatibility
- Free RAM
- Network presence
- Storage connectivity

Highlights:
- Affinity
- Load isolation and trust
- Labels

14
ye

s 
/ n

o

y 
= 

f(x
)

x 
| m

ax
(y

)



 

Scoring

  Map a metric to a score
                         like CPU load 10% to 10.

Different metrics require different representation:
- CPU cores, running VM count - absolute number
- Free memory vs used memory - absolute or percents?
- CPU load vs “free” CPU - percents, something based on 

frequency? SMP?
- Label presence - boolean

15
ye

s 
/ n

o

y 
= 

f(x
)

x 
| m

ax
(y

)



 

Selecting the destination

Which node is the best? … it depends on the goal
- Maximizing performance, saving power or upgrade process?

Multiple metrics need multipliers for importance

So which node is the best then?
- How do you sum 10%, 3.5GiB and 16 together?
- Normalization!

nova.conf:

weight_setting = 

"metric1=ratio1,metric2=ratio2"

kind: "Policy"

version: "v1"

predicates:

...

priorities:

...

 - name: "RackSpread"

    weight: 1 

16
ye

s 
/ n

o

y 
= 

f(x
)

x 
| m

ax
(y

)



 

Score normalization

Project Algorithm To Note

oVirt rank - compresses differences

OpenStack scale / maximum 
over all hosts

0 - 1 depends on filter results

kubernetes scale / single 
host

0 - 10 incorrect on 
heterogeneous clusters

17



 

 

18

Balancing and 
preemption



 

Balancing and Preemption

Methods
- offline migration (kill & re-start)
- preemption (kill & start other)
- live migration (move)

“Situations” emerging at runtime
- overload
- rule violations (eg. new affinity defined)

Selecting the best move
- select the object and select the move
- remember the deterministic assumption
- HARD!

19



 

Balancing - oVirt

Load balancing - equally balanced policy

20



 

Balancing - oVirt

Load balancing - power saving policy

OFF

21



 

Preemption - kubernetes

Can we kill low priority load when needed?

- Guaranteed load scheduling (DNS, network controller)
- Eviction policy (Help! I am overloaded)
- Disruption budget (Feel free to use one of mine)

Preemption in use elsewhere:
- AWS spot instances - money based priority

22

https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
https://blog.kublr.com/learn-how-kubelet-eviction-policies-impact-cluster-rebalancing-2e976ebc53ea
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work
https://aws.amazon.com/ec2/spot/


 

 

23

Highlights and good ideas



 

Interesting highlights

Scheduling:
● oVirt optimizer (probabilistic scheduling service)
● Chance scheduler (random selection)
● Arbitrary filtering rules in spec (booleans, operators)

Host devices:
● resource hierarchy and host device aliases 

Resource tracking
● declarative and reactive - scheduler fills in data to Pod spec

24

https://community.redhat.com/blog/2014/11/smart-vm-scheduling-in-ovirt-clusters/
https://docs.openstack.org/ocata/config-reference/compute/schedulers.html#chance-scheduler
https://youtu.be/LVkknWuGq_I?t=30m7s
https://docs.openstack.org/nova/pike/admin/pci-passthrough.html#enable-pci-passthrough-compute


 

Good ideas

● labels
● normalization methods
● atomic resource tracking and reservation

● multiple schedulers and split-brain protection
● balancing and preemption

25



 

Summary

All three schedulers are very similar in concept

Differences are small and based on
the needs of the typical workload

There are ideas worth sharing!

26



 

 

THANK YOU !

Martin Sivák
msivak@redhat.com

with thanks to Red Hat’s OpenStack team

27

mailto:msivak@redhat.com

