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Goals of a scheduler

Find a place with enough resources
to start the given VM[1] ...

… and make sure it keeps running
… and make sure it handles the load
… and keep the power consumption low
… and ...

[1] or container
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Design considerations

- Size of cluster (~ hundreds of nodes)
- Deterministic algorithms
- Migrations and balancing
- Homogeneous cluster vs. heterogeneous cluster

- Pet vs. cattle
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Scheduler as a function

AVM

CFG

NODE
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RESOURCES



 

The schedulers
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Number comparison

oVirt OpenStack kubernetes

~ Max nodes 200 ~300 5000

Language Java Python Go

Load type pet VMs cattle VMs containers

Resource 
tracking

pending + 
stats

placement 
service

pod spec in 
etcd

Active 
schedulers

1 1 or more 1 or more
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https://kubernetes.io/docs/admin/cluster-large/
https://youtu.be/LVkknWuGq_I?t=26m50s
https://youtu.be/LVkknWuGq_I?t=26m50s
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
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Resource tracking



 

Resource tracking

oVirt
- pending resources are tracked,

free resources come from reports

management   node
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SIMPLIFIED!



 

Resource tracking

kubernetes
- allocated resources are part of Pod spec,

free = total - ∑spec

API

management   node
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SIMPLIFIED!

https://kubernetes.io/docs/api-reference/v1.9/#pod-v1-core


 

Resource tracking

OpenStack
- a placement service handles tracking

and atomic resource reservation

placement

management   node
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SIMPLIFIED!

https://www.openstack.org/videos/boston-2017/scheduler-wars-a-new-hope
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The Algorithm



 

Algorithm - not rocket science

Filter

Map

Reduce

Remove all nodes that do not 
satisfy hard constraints

Compute score, typically based on 
node load and free resources

Select the best node

yes / no

y = f(x)

x | max(y)
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Filtering

Filter out incompatible nodes

Typical filters:
- CPU compatibility
- Free RAM
- Network presence
- Storage connectivity

Highlights:
- Affinity
- Load isolation and trust
- Labels
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Scoring

  Map a metric to a score
                         like CPU load 10% to 10.

Different metrics require different representation:
- CPU cores, running VM count - absolute number
- Free memory vs used memory - absolute or percents?
- CPU load vs “free” CPU - percents, something based on 

frequency? SMP?
- Label presence - boolean
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Selecting the destination

Which node is the best? … it depends on the goal
- Maximizing performance, saving power or upgrade process?

Multiple metrics need multipliers for importance

So which node is the best then?
- How do you sum 10%, 3.5GiB and 16 together?
- Normalization!

nova.conf:

weight_setting = 

"metric1=ratio1,metric2=ratio2"

kind: "Policy"

version: "v1"

predicates:

...

priorities:

...

 - name: "RackSpread"

    weight: 1 
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Score normalization

Project Algorithm To Note

oVirt rank - compresses differences

OpenStack scale / maximum 
over all hosts

0 - 1 depends on filter results

kubernetes scale / single 
host

0 - 10 incorrect on 
heterogeneous clusters
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Balancing and 
preemption



 

Balancing and Preemption

Methods
- offline migration (kill & re-start)
- preemption (kill & start other)
- live migration (move)

“Situations” emerging at runtime
- overload
- rule violations (eg. new affinity defined)

Selecting the best move
- select the object and select the move
- remember the deterministic assumption
- HARD!
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Balancing - oVirt

Load balancing - equally balanced policy
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Balancing - oVirt

Load balancing - power saving policy

OFF
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Preemption - kubernetes

Can we kill low priority load when needed?

- Guaranteed load scheduling (DNS, network controller)
- Eviction policy (Help! I am overloaded)
- Disruption budget (Feel free to use one of mine)

Preemption in use elsewhere:
- AWS spot instances - money based priority
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https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
https://blog.kublr.com/learn-how-kubelet-eviction-policies-impact-cluster-rebalancing-2e976ebc53ea
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work
https://aws.amazon.com/ec2/spot/
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Highlights and good ideas



 

Interesting highlights

Scheduling:
● oVirt optimizer (probabilistic scheduling service)
● Chance scheduler (random selection)
● Arbitrary filtering rules in spec (booleans, operators)

Host devices:
● resource hierarchy and host device aliases 

Resource tracking
● declarative and reactive - scheduler fills in data to Pod spec
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https://community.redhat.com/blog/2014/11/smart-vm-scheduling-in-ovirt-clusters/
https://docs.openstack.org/ocata/config-reference/compute/schedulers.html#chance-scheduler
https://youtu.be/LVkknWuGq_I?t=30m7s
https://docs.openstack.org/nova/pike/admin/pci-passthrough.html#enable-pci-passthrough-compute


 

Good ideas

● labels
● normalization methods
● atomic resource tracking and reservation

● multiple schedulers and split-brain protection
● balancing and preemption
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Summary

All three schedulers are very similar in concept

Differences are small and based on
the needs of the typical workload

There are ideas worth sharing!
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THANK YOU !

Martin Sivák
msivak@redhat.com

with thanks to Red Hat’s OpenStack team
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