
A SLIGHTLY DIFFERENT
NESTING
KVM on Hyper-V

Vitaly Kuznetsov <vkuznets@redhat.com>

FOSDEM 2018

mailto:vkuznets@redhat.com

What is nested virtualization?

In this presentation:

Linux

Hyper-V

Hardware

This is L0

Linux with Windows partition KVM
This is L1

This is L2

Why does it matter?

● Private and public clouds (Azure) running Hyper-V
○ Partitioning ‘big’ instances for several users
○ ‘Secure containers’ (e.g. Intel Clear Containers)
○ Running virtualized workloads (OpenStack, oVirt, …)
○ Debugging and testing
○ ...

Nesting in Hyper-V

- Introduced with Hyper-V 2016
- Main target: Hyper-V on Hyper-V
- Not enabled by default

Set-VMProcessor -VMName <VMName> -ExposeVirtualizationExtensions $true

MICRO-BENCHMARKS

Benchmark: tight CPUID loop

“Worst case for nested virtualization”

#define COUNT 10000000

before = rdtsc();

for (i = 0; i < COUNT; i++)
cpuid(0x1);

after = rdtsc();

printf("%d\n", (after - before)/COUNT);

Benchmark: tight CPUID loop

Results:

Bare metal 180 cycles

L1 1350 cycles

L2 20700 cycles

How virtualization works (on Intel)

● Hypervisor prepares VMCS area (4k) representing guest state
● Hypervisor ‘runs’ the guest
● Guest runs on hardware until some ‘assistance’ is needed
● We ‘trap’ back into the hypervisor
● Hypervisor analyzes guest’s state in VMCS area and provides the

required assistance
● Hypervisor modifies guest’s state in VMCS area
● Hypervisor ‘resumes’ the guest

Hardware

Hypervisor VMCS
Guest

(simplified)

How one may think nested virtualization
works on Intel

● L0 creates VMCS for L1, runs L1
● L1 creates VMCS for L2, runs L2
● L2 traps into L1 when needed, L1 resumes L2, ...

L1 hypervisor

Hardware

L0 hypervisor
VMCS

VMCS
L2 guest

How nested virtualization really works
on Intel

● L1 prepares his idea of VMCS for L2
● L1 ‘runs’ L2 guest, this traps into L0
● L0 merges VMCS for L1 with L1’s idea of VMCS for L2, creates ‘real’ VMCS for

L2 and ‘runs’ L2
● When ‘assistance’ is needed L2 traps into *L0*
● L0 analizes L2 state, makes changes and resumes L1
● L1 analizes L2 state, makes changes and resumes L2, this traps into L0
● L0 merges VMCS for L1 with L1’s idea of VMCS for L2, creates ‘real’ VMCS for

L2 and ‘runs’ L2

(simplified)

L1 hypervisor L2 guest

Hardware

L0 hypervisor

VMCS L0->L1

VMCS L1->L2

VMCS L0->L2

How nested virtualization really works
on Intel

● L0 may use “Shadow VMCS” hardware feature so each VMREAD/VMWRITE
instruction in L1 doesn’t trap into L0 (extremely slow otherwise)

● When L1 is done, L0 will have to copy the whole Shadow VMCS to some
internal representation and re-create regular VMCS for L2 ...

● … so this is still not very fast

(continued)

L1 hypervisor L2 guest

Hardware

L0 hypervisor

VMCS L0->L1
Shadow
VMCS
L1->L2

VMCS L0->L2

Benchmark: tight CPUID loop

● Not really, L2 VMEXITs are always going to be significantly slower
compared to L1 with current Intel architecture

● … but we can cut some corners, in particular:
○ L1 accessing and modifying L2’s VMCS
○ The need to re-create VMCS L0->L2 upon entry

● Hyper-V provides “Enlightened VMCS”
○ Store VMCS L1->L2 in a defined structure in memory, access it with

normal memory reads/writes
○ “CleanFields” mask signalling to L0 which parts of VMCS really

changed
○ “[PATCH 0/5] Enlightened VMCS support for KVM on Hyper-V” on the

mailing list

Solution?

Benchmark: tight CPUID loop

Results:

Bare metal 180 cycles

L1 1350 cycles

L2 8900 cycles

Benchmark: clock_gettime()

“What time is it now”

#define COUNT 10000000

before = rdtsc();

for (i = 0; i < COUNT; i++)
clock_gettime(CLOCK_REALTIME, &tp);

after = rdtsc();

printf("%d\n", (after - before)/COUNT);

Benchmark: clock_gettime()

Results:

Bare metal 55 cycles

L1 70 cycles

L2 1500 (post-Meltdown/Spectre)

Benchmark: clock_gettime()

On L1:

On L2:
●

cat /sys/devices/system/clocksource/clocksource0/current_clocksource
kvm-clock

cat /sys/devices/system/clocksource/clocksource0/current_clocksource
hyperv_clocksource_tsc_page

Benchmark: clock_gettime()

Reason?
arch/x86/kvm/x86.c:

/*
 * If the host uses TSC clock, then passthrough TSC as stable
 * to the guest.
 */
host_tsc_clocksource = kvm_get_time_and_clockread(
 &ka->master_kernel_ns,
 &ka->master_cycle_now);

ka->use_master_clock = host_tsc_clocksource && vcpus_matched
 && !ka->backwards_tsc_observed
 && !ka->boot_vcpu_runs_old_kvmclock;

Benchmark: clock_gettime()

● Tell KVM Hyper-V TSC page is a good clocksource!
● But what happens when L1 is migrated and TSC frequency

changes?

● Need to make L1 aware of migration

KVM

Solution?

Hardware TSC freq1

Hyper-V
TSC Page 1

L2 guest
pvclock1

KVM

Hardware TSC freq2

Hyper-V
TSC Page 2

L2 guest
???

Benchmark: clock_gettime()

● ‘Reenlightenment Notifications’ feature in Hyper-V:
○ L1 receives an interrupt when it is migrated
○ TSC accesses are emulated until we update all pvclock pages for L2

guests

● See “[PATCH v3 0/7] x86/kvm/hyperv: stable clocksource for L2
guests when running nested KVM on Hyper-V”

Solution

Benchmark: clock_gettime()

Results:

Bare metal 55 cycles

L1 70 cycles

L2 80 cycles

MACRO-BENCHMARKS

Benchmark: iperf with SR-IOV

● L1: 16 cores, 2 NUMA nodes, mlx4 VF, 4.15.0-rc8+
eVMCS/clocksource patchsets

● L2: 8 cores, 1 NUMA node, virtio-net, 4.14.11-300.fc27

Setup

Linux/KVM

Mellanox ConnectX-3 Pro 40G

Hyper-V
SR-IOV mlx4 VF

L2 guest

virtio-net

Linux receiver

Vhost (2 queues) + tun/tap

Benchmark: iperf with SR-IOV
Results

Benchmark: iperf with SR-IOV

● L2 -> L1 vcpu pinning
○ <vcpupin vcpu='0' cpuset='8'/>

● Vhost settings
○ <driver name='vhost' txmode='iothread' ioeventfd='on' queues='2'/>

● VF queues in L1, CPU assignment
○ Mlx4 defaults are OK

● ...

Things to play with

Benchmark: iperf without SR-IOV

● L1: 16 cores, 2 NUMA nodes, netvsc, 4.15.0-rc8+
eVMCS/clocksource patchsets

● L2: 8 cores, 1 NUMA node, virtio-net, 4.14.11-300.fc27

Setup

Linux/KVM

Mellanox ConnectX-3 Pro 40G

Hyper-V
VMBus/netvsc

L2 guest

virtio-net

Linux receiver

Vhost (2 queues) + tun/tap

Benchmark: iperf without SR-IOV
Results

Benchmark: iperf without SR-IOV

● L2 -> L1 vcpu pinning
● Vhost settings
● VMBus channel pinning (automatic only)

● Can be re-shuffled with “ethtool -L”

Things to play with

lsvmbus -vv
…
VMBUS ID 17: Class_ID = {f8615163-df3e-46c5-913f-f2d2f965ed0e} - Synthetic network
adapter

Device_ID = {21938293-957d-4e27-a53b-ae35f90aba2b}
Sysfs path: /sys/bus/vmbus/devices/21938293-957d-4e27-a53b-ae35f90aba2b
Rel_ID=17, target_cpu=9
Rel_ID=35, target_cpu=10
Rel_ID=36, target_cpu=3
Rel_ID=37, target_cpu=11
Rel_ID=38, target_cpu=4
Rel_ID=39, target_cpu=12
Rel_ID=40, target_cpu=5
Rel_ID=41, target_cpu=13

Benchmark: kernel build

● L1: 8 cores Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz, 1 NUMA
node, 30G RAM (16G tmpfs)

○ 4.14.11-300.fc27 for kernel build
○ 4.15.0-rc8+EVMCS/stable clocksource patchsets when running L2

● L2: 8 cores, 1 NUMA node, 30G RAM (16G tmpfs), 4.14.11-300.fc27
● Test: building linux kernel

Setup

make clean && time make -j8

Benchmark: kernel build

Results:

L1 real 26m42.187s
user 131m18.664s
sys 21m53.760s

L2 real 26m54.887s
user 139m19.752s
sys 21m31.111s

L2 (Enlightened VMCS in use) real 27m53.110s
user 138m27.416s
sys 21m3.839s

FURTHER IMPROVEMENTS

Nested Hyper-V features we don’t use

● Enlightened MSR bitmap
○ Natural extension of Enlightened VMCS

● Direct Virtual Flush
○ Paravirtual TLB flush for L2 guests

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

