
TLS for MySQL
at Large Scale

Jaime Crespo



Things we 
are *NOT* 

going to 
talk about:

● Security and encryption 

fundamentals

● “At rest” encryption

● Best practices for web/HTTP 

encryption

● How perfectly and good we are- we 

made mistakes and we will present 

them to you



Things we 
*ARE* going 
to talk 
about:

● “On the wire” encryption

● Focused on for large scale web 

applications

● Operational/DBA point of view

● Feature requests for 

MySQL/MariaDB developers

● Failures that can serve as lessons 

learned for other ops



Why 
deploying 

TLS for 
MySQL?

● Privacy and security over cost- we aim 

for full stack encryption

● Known, documented security threads

● Compliance with modern security 

standards; getting modern 

authentication methods



TLS Myths

● TLS is slow

● TLS doesn’t work at scale

● TLS is not needed on a private 

network/for databases

● TLS is hard - it is not, it is mostly an 

operational challenge



TLS on MySQL is easy

* Latest MySQL versions 
even do this for you 
automatically



Thank you!

Author: Jaime Crespo/Wikimedia Foundation
License: CC-BY-SA-3.0 (except where noted)



TLS for MySQL
at Large Scale

Jaime Crespo



”The greatest failure, 
teacher is”

-- Yoda. Star Wars: The Last Jedi

Author: GPS https://www.flickr.com/photos/zoxcleb/8732125673/ 
License: CC-BY-SA-2.5

https://www.flickr.com/photos/zoxcleb/8732125673/


We rushed 
to 

production

● We were going to activate a second 

datacenter for the first time - people 

on top wanted encryption rolled in 

ASAP

● We setup some initial configuration 

with some test certificates

● We ended up working 3 times as much: 

first when we set them up, again to 

remove it and setup it again

● Resources were limited: 1 full time 

employee (which were already in 

charge of all MySQL maintenance and 

firefighting); no external resources



We didn’t 
have 
proper 
orchestrati
on in place

● TLS at internal storage treated like 

rolling public HTTPS - different use 

case and problems

● We didn’t have a proper certificate 

manager service

● Older OpenSSL version had frequent 

security problems

● Every time OpenSSL or MySQL had to 

be upgraded, we had to restart the 

daemon

● If the change was incompatible (e.g. 

CA update), you had to sync 

client/server and master/replicas



Server 
support 

was poor

● MySQL/MariaDB older version (5.5) had 

problems with modern 

ciphers/protocols

● Only OpenSSL-linked servers had 

proper modern TLS support (>=1.2)

● OpenSSL was not GPL-compatible

● We had to deploy our own package 

(wmf-mariadb, wmf-mysql)



Client and 
3rd party 
support 
was poor

● Client libraries also had to be 

upgraded/linked to OpenSSL

● Some problems with clients 

(Mono/Sharp) silently enabling TLS for 

“MySQL as a service” products

● Most issues related to TLSv1.2 support

● Old client connectors (PHP5) 

incompatibilities

● ProxySQL did not support TLSv1.2

● Colleagues report mysql cli “no longer 

works”



Successes 
and 

things we 
did right

● We rolled TLS at first opt-in- This allowed 

easy rollback. We defaulted to TLS enabled, 

though.

● Communicated the change to fellow ops

● Organization support

● We went for replication channel and 

administration encryption first- 

indetectable overhead due to almost no 

reconnections

● We went for TLSv1.2 from the beginning 

(2015)

● 100% coverage is not rushed- we can wait 

for CA, licensing and client library support



Metrics

● Same-DC, non-SSL: 
○ 0.001132071018219 s/conn
○ 0.00024072647094727 s/query

● Same-DC, SSL:
○ 0.057012629508972 s/conn
○ 0.00025907039642334 s/query 

● Cross-DC, non-SSL:
○ 0.1113884806633 s/conn
○ 0.036313643455505 s/query

● Cross-DC, SSL:
○ 0.22943157196045 s/conn
○ 0.036422135829926 sec/query

● Local ProxySQL+Cross-DC, non-SSL:
○ 0.0002328896522522 s/conn
○ 0.036425504684448 s/query



MySQL 
community 

wishlist

● Easier certificate/TLS library handling 

from the servers (#81461, #75404, #83758)

● Proper TLS 1.2+ support from 

connectors/clients/middleware (e.g. 

ProxySQL #1247)

● Proper OpenSSL 1.1+ support (#83814, 

#12811)

● Sharing more tests/metrics/ 

performance benchmarks

https://bugs.mysql.com/bug.php?id=81461
https://bugs.mysql.com/bug.php?id=75404
https://bugs.mysql.com/bug.php?id=83758
https://github.com/sysown/proxysql/issues/1247
https://bugs.mysql.com/bug.php?id=83814
https://jira.mariadb.org/browse/MDEV-12811


Pending 
work for us

● Setup persistent connections (not only 

for TLS, but also for active-active 

cross-dc requests)

● Enable TLS also for regular connections

● Better monitoring (certificate 

expiration)

● Enforce TLS at grant level

● Roll in modern authentication (sha256)



Thank you!

Author: Jaime Crespo/Wikimedia Foundation
License: CC-BY-SA-3.0 (except where noted)


