Piece of cake – testing remote embedded devices made easy using open-hardware MuxPi

Paweł Wieczorek
February 3, 2018
Samsung R&D Institute Poland
Agenda

1. Introduction
2. Previous efforts
3. Idea
4. Hardware
5. Software
6. Next steps
7. Conclusion
Introduction
Tizen use cases

Release engineering

- Continuous platform development
- QA step prior pulling new changes
- Package internal tests are not enough
Remote accessibility

- Easy to store in a secure manner
- Less effort than per developer
- Better utilized when shared
Previous efforts
- Linaro Automated Validation Architecture
- Automation system for deploying operating systems
- Virtual and physical hardware supported
- Allows running boot, bootloader and system level tests
Statistics

Since May 2014 we:

- Ran 13,432 jobs on 65 unique trees and 12,921 unique kernels.
- Performed 2,039,645 builds on 277 unique defconfigs.
- Performed 3,494,550 boots on 271 unique boards, across 3 architectures and 34 unique SoCs.

https://kernelci.org/stats/
SD MUX – open hardware

https://git.tizen.org/cgit/tools/testlab/sd-mux
Autohat board (SD MUX-based)

https://github.com/resin-io/autohat-board
$ dmesg | tail -12
[98.375599] usb 3-1: new full-speed USB device number 12 using xhci_hcd
[98.487663] usb 3-1: device descriptor read/64, error -71
[98.703656] usb 3-1: device descriptor read/64, error -71
[98.919658] usb 3-1: new full-speed USB device number 13 using xhci_hcd
[98.919969] usb 3-1: Device not responding to setup address.
[99.123998] usb 3-1: Device not responding to setup address.
[99.327681] usb 3-1: device not accepting address 13, error -71
[99.439718] usb 3-1: new full-speed USB device number 14 using xhci_hcd
[99.440049] usb 3-1: Device not responding to setup address.
[99.644028] usb 3-1: Device not responding to setup address.
[99.847719] usb 3-1: device not accepting address 14, error -71
[99.847819] usb usb3-port1: unable to enumerate USB device
Idea
Lessons learnt

STOP

11/32
Hardware
MuxPi
MuxPi components

- **NanoPi NEO**
 - USB / UART SWITCH & ID
 - 4-wire UART Level Shifter
 - Watchdog Timer

- **Power Control & Current Measurement**
- **μC Cortex-M0**
 - CTRL, ADC, DyPers, HDMI, GPIO, UI

- **SD-MUX**
 - 2-Port USB HUB
 - SD-READER

- **UI**
 - 4x LED, 2x Button, OLED Display

- **2x 2-channel DyPers**

- **Connectors**
 - ETH in
 - USB OTG
 - 5Pin USB
 - UART
 - 2x PWR
 - BARREL
 - USB ETH
 - 2x USB-A
 - μSD Adapter
 - HDMI
 - ADD-ONS
 - 4x DyPer

13/32
MuxPi components

- NanoPi NEO
 - USB / UART SWITCH & ID
 - 4-wire UART Level Shifter
 - Watchdog Timer
 - Power Control & Current Measurement
 - μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI
 - Power Supply
 - UI
 - 4x LED, 2x Button, OLED Display
 - 2x 2-channel DyPers

- Connectors
 - ETH TS
 - USB OTG
 - 5Pin USB
 - UART
 - 2x PWR
 - BARREL

- SD-MUX
 - 2-Port USB HUB
 - SD-READER

- Connectors
 - ETH OUT
 - 2x USB-A
 - μSD Adapter
 - HDMI
 - ADD-ONS
 - 4x DyPer
MuxPi components

NanoPi NEO
- USB / UART SWITCH & ID
- 4-wire UART Level Shifter
- Watchdog Timer

2-Port USB HUB
- SD-READER

SD-MUX
- μC Cortex-M0
 - CTRL, ADC, DyPers, HDMI, GPIO, UI

Power Control & Current Measurement

Power Supply
- 4x LED, 2x Button, OLED Display

UI

2x 2-channel DyPers

Connectors
- ETH T5
- USB OTG
- 5Pin USB
- UART
- 2x PWR
- BARREL

Connectors
- ETH OUT
- 2x USB-A
- μSD Adapter
- HDMI
- ADD-ONS
- 4x DyPer
MuxPi components
MuxPi components
Indicators
Easy maintenance

--- BORUTA ---
192.168.0.2
Extensibility
Major improvements

- Independent (standalone)
- Aware of its state
- Easy to maintain
- Extensible from start
Building your own

NanoPi NEO ≈ $10
Building your own

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoPi NEO</td>
<td>$10</td>
</tr>
<tr>
<td>Parts</td>
<td>$80</td>
</tr>
</tbody>
</table>

[https://git.tizen.org/cgit/tools/muxpi/

Building your own

NanoPi NEO ≈ $10
Parts ≈ $80
Soldering skills High

https://git.tizen.org/cgit/tools/muxpi
Building your own

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoPi NEO</td>
<td>$10</td>
</tr>
<tr>
<td>Parts</td>
<td>$80</td>
</tr>
<tr>
<td>Soldering skills</td>
<td>High</td>
</tr>
<tr>
<td>Patience</td>
<td>A LOT</td>
</tr>
</tbody>
</table>
Building your own

<table>
<thead>
<tr>
<th>NanoPi NEO</th>
<th>$10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts</td>
<td>$80</td>
</tr>
<tr>
<td>Soldering skills</td>
<td>High</td>
</tr>
<tr>
<td>Patience</td>
<td>A LOT</td>
</tr>
</tbody>
</table>

https://git.tizen.org/cgit/tools/muxpi
Software
Multitier architecture

- “Do One Thing and Do It Well”
- RESTful HTTP APIs
- Homogeneous solution stack
Responsibilities

- Who knows what requires verification?
- Who knows which actions are necessary?
- Who knows where can it be done?
- Who knows how to do it?
Responsibilities

• Who knows what requires verification? **Perun**

• Who knows which actions are necessary?

• Who knows where can it be done?

• Who knows how to do it?
Responsibilities

• Who knows what requires verification? **Perun**

• Who knows which actions are necessary? **Weles**

• Who knows where can it be done?

• Who knows how to do it?
Responsibilities

- Who knows what requires verification? **Perun**
- Who knows which actions are necessary? **Weles**
- Who knows where can it be done? **Boruta**
- Who knows how to do it?
Responsibilities

• Who knows what requires verification? Perun
• Who knows which actions are necessary? Weles
• Who knows where can it be done? Boruta
• Who knows how to do it? MuxPi
MuxPi (farm)

- Manages single DUT
- Fully aware of its capabilities
- Requires only two interfaces
 - Power supply
 - Network connection (Ethernet)
• Dryad farm management system
• Schedules requests
 • Priority
 • Device groups
 • Delayed access
• Provides convenient access to selected Dryad
- Lightweight testing framework
- Provides LAVA-like interface
- YAML job definition ➔
 actions executed on DUT
 - Deploy
 - Boot
 - Test
 - Collect
• OS images testing system
• Schedules verification (per new set of OS images)
• Automates QA step of Release Engineering Duty
Keeping it simple
Keeping it simple (and decoupled)
Next steps
Future plans

Hardware

• Audio I/O
• USB Type C investigation
• NanoPi serial console on USB

Software

• Web interfaces for current layers
• Service state management
• Release engineer's layer
Conclusion
Summary

- Quick setup
- Easy maintenance
- Responsibilities division
- Execution parallelization
- Environment unification
Questions?

• MuxPi

 https://wiki.tizen.org/MuxPi

• SD MUX (deprecated – lesson learnt)

 https://wiki.tizen.org/SD_MUX

• Mailing list

 general@lists.tizen.org

• #tizen on Freenode

 https://webchat.freenode.net/?channels=tizen
• *Metropolis* – simple, modern Beamer theme
Pictures used

- https://commons.wikimedia.org/wiki/File:Tux.svg
- https://commons.wikimedia.org/wiki/File:Wayland_Lo.png
- https://commons.wikimedia.org/wiki/File:Enlightenment_logo_black.png
- https://developer.tizen.org/sites/default/files/images/about_tizen_1.png
- https://commons.wikimedia.org/wiki/File:ColoredBlankMap-World-10E.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Korean_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_Polish_flag.svg
- https://commons.wikimedia.org/wiki/File:Nuvola_USA_flag.svg
- https://validation.linaro.org/static/docs/v2/_images/lava.svg
- https://wiki.linaro.org/Platform/LAB/LMP_in_practice
- https://forums.resin.io/uploads/resin/original/1X/88ab2e061cd644b18b95fa99ede9ce6b98adfa44.jpg
- https://commons.wikimedia.org/wiki/File:Italian_traffic_signs_-_fermarsi_e_dare_precedenza_-_stop.svg
- https://farm9.staticflickr.com/8263/28955874330_d1b1202ae8_k_d.jpg
- https://commons.wikimedia.org/wiki/File:PEO-smiley_smile.svg