The State of Go

Where we are on February 2018

Francesc Campoy
VP of Developer Relations at source{d}

Time flies

Go 1.8 is one year old (Happy Birthday!)
Go 1.9is already 6 months old!

Go 1.10rc1 was released on January 25th.

Go 1.10 is about = to be released!

Notes

The slides are already available on campoy.cat/l/sog110

Most of the code examples won't run except locally and using Go 1.10.

The playground still runs Go 1.9.

do not send issues about the slides not running correctly online!

https://campoy.cat/l/sog110

Agenda
Changes since Go 1.9:

e The Language
The Ports

The Tooling
The Standard Library

The Performance

The Community

Changes To The Language

Changes To The Language

source

http://ukrokuchannels.blogspot.be/2013/11/roku-uk-channel-store-weekly-roundup-35.html

Ports

New Ports

source

https://timesofindia.indiatimes.com/world/rest-of-world/snow-in-the-sahara-desert-it-happened-this-week-in-ain-sefra-algeria/articleshow/56114067.cms

Notes On Existing Ports

e FreeBSD: requires FreeBSD 10.3 or later

NetBSD: works but requires NetBSD 8 ... which is not released yet

OpenBSD: next version will require OpenBSD 6.2

OS X: next version will require OS X 10.10 Yosemite

Windows: next version will require Windows 7 (no more XP or Vista)

32-bits MIPS have now a new GOMIPS variable (hardfloat | softfloat)

One More Note On Existing Ports

It's rare that | laugh out loud while reading GitHub issues.

And even after Go 1.12 comes out, you can keep using Go 1.10, we just won't fix bugs in it. But if

you're happy with it (or Go 1.9 or whatever version), great. You won't get security fixes, but if you are
running XP you're not worried about that.

Changes To The Tooling

Changes To The Tooling

In two words: easier and faster.

Easier set-up
GOPATH became optional in Go 1.8.
GOROOQT is now optional too, deduced from the binary path.

A new variable GOTMPDIR was added to control where temporary files are created.

Faster tools via caching

e go install now caches the result of compiled packages.
e go install and go build are much faster in general as a result
e youwon'tneed go build -ianymore!

It seems the pkg directory might eventually disappear!

Testing
Also caches results, everything is faster

=» go test strings
ok strings (cached)

In order to bypass the cachee use -count=1

=» go test -count=1 strings
ok strings 0.295s

Also runs vet, some of your tests might fail.
Also:

e coverprofile can be done over many tests too

e new -failfast and -json flags

A Small Detour

Three-Index Slicing
Did you know you can use three values for slicing?

text := []byte("Hello FOSDEM!")
fmt.Printf("text: %s", desc(text))

hello := text[0:5]
fmt.Printf("hello: %s", desc(hello))

hello = append(hello, '#')
fmt.Printf("hello: %s", desc(hello))

fmt.Printf("text: %s", desc(text)) Run

Three-Index Slicing (cont.)

You can control the capacity of the resulting slice.

text := []byte("Hello FOSDEM!")
fmt.Printf("text: %s", desc(text))

hello := text[0:5:5]
fmt.Printf("hello: %s", desc(hello))

hello = append(hello, '#')
fmt.Printf("hello: %s", desc(hello))

fmt.Printf("text: %s", desc(text))

Run

gofmt

Small change in formatting of three-index slicing expressions.
Before:

afi : j:k]

Now:

afi : j : K]

This might break some of your Cl tests (it broke some of mine).

Changes To The Standard Library

Changes To The Standard Library
No new packages with Go 1.10

Trivia: Do you remember which new package was added with Go 1.97

Changes to bytes

Fields, FieldsFunc, Split, and SplitAfter limit the capacity of the returned slices.

text := []byte("Hello FOSDEM!")
fmt.Printf("text: %s", desc(text))

hello := bytes.Fields(text)[0]
fmt.Printf("hello: %s", desc(hello))

hello = append(hello, '#')
fmt.Printf("hello: %s", desc(hello))

fmt.Printf("text: %s", desc(text)) Run

playground

https://play.golang.org/p/efBt6pBszef

Changes to flags
This is minor, but | am very happy about it!

stuff := flag.Int("s", 0, "some other stuff\nit's long to explain")

z := flag.Int("z", 42, "some number™)
flag.Parse() Run
Before
-s int

some other stuff
it's long to explain
-z int
some number (default 42)

Now ==

-s int
some other stuff
it's long to explain
-z int
some number (default 42)

Changes to go/doc
For a type T, functions returning slices of T, *T, or **T are now linked to T.

Those functions now appear in the Funcs list of the type, not the package.
Example:

package things

// Thing is stuff.
type Thing struct{}

// NewThing returns a new thing.
func NewThing() *Thing { return nil }

// ManyThings returns many new things.
func ManyThings() [1Thing { return nil }

Changes to go/doc (cont.)

Before
package things // import "github.com/campoy/talks/go1.10/things"
func ManyThings() []Thing

type Thing struct{}
func NewThing() *Thing

Now ==
package things // import "github.com/campoy/talks/go1.10/things"
type Thing struct{}

func ManyThings() []Thing
func NewThing() *Thing

Changes to text/template
New {{break}} and {{continue}} for {{range}}.

var tmpl = template.Must(template.New("example").Funcs(template.FuncMap{
"even": func(x int) bool { return x%2 == 0 },
}).Parse(”
{{ range . }}
.}
{{ if even . -}}
even
{{ continue }}
{{ end -}}
odd
{{ if eq . 5 }}
{{ break }}
{{ end }}
{{ end }}
‘)) Run

Note: Interestingly, this is not implemented in the html package.

strings
I'm sure you've written this kind of code before.

var buf bytes.Buffer
fmt.Fprintln(&buf, "Hello, FOSDEM gophers!™)
fmt.Printf(buf.String())

But there's some issues with it.

String creates allocations since it convers []Jbyte to string.

There could be a better and simpler way to do this.

var b strings.Builder
fmt.Fprintln(&, "Hello, FOSDEM gophers!")
fmt.Printf(b.String())

This uses unsafe to avoid copies in the creation of strings.

Run

Run

strings.Builder .:
When you're creating many strings, it is definitely worth it.

for 1 := 0; 1 < 10000; i++ {
fmt.Fprintf(w, "&"
out = w.String()

Benchmark results:

$ go test -bench=. -benchmem

goos: darwin

goarch: amdé64

pkg: github.com/campoy/talks/go1.10/strings

BenchmarkBuffer-4 100 20861915 ns/op 215641272 B/op 10317 allocs/op
BenchmarkBuilder-4 3000 535081 ns/op 153647 B/op 22 allocs/op
PASS

ok github.com/campoy/talks/go1.10/strings 3.626s

strings.Builder -/
When you're creating many strings, it is definitely worth it.

for 1 :=0; 1 < 10000; i++ {
fmt.Fprintf(w, "@"
// out = w.String()

Benchmark results:

$ go test -bench=. -benchmem

goos: darwin

goarch: amdé64

pkg: github.com/campoy/talks/go1.10/strings

BenchmarkBuffer-4 3000 525691 ns/op 152056 B/op 11 allocs/op
BenchmarkBuilder-4 3000 626132 ns/op 153647 B/op 22 allocs/op
PASS

ok github.com/campoy/talks/go1.10/strings 4.072s

unicode

@@QIEBGG@HEGHD@@
EETCEEEEE B R
2888 e @ B HA DA
AFFFFEEEYE¥FE ¥
HHH@MWMMMQ@Q@@
2eeeReReQe@ewew il
~ z@azaﬂaﬁwqu@J@uau

AEFAFEEAEE 4 3 A AR

8 &j&@ﬂagﬁﬂm[HWJ
p 2223)22l (328 8)e 0 (0
_fﬁ@@lﬁﬁf.ﬁﬁﬁlﬁ@ﬁ@ﬁ@ﬁ
1l 7 id] 74 id| o4 r A PN N ENEVE AR IR AR AR S
ididididadadadELE Juw
UMHMH@@J@UAM[MM@UUWHMM
Ele¥Jel=|A &)=

source

¢

[
k4

@ [@)f9] G (G [fa]@

=
&
28
ln
Ve
da
Y

@\ §_: P.E

http://www.unicode.org/emoji/charts/emoji-versions.html#2017

unicode

oh my gopher!

unicode

sure ... why not

unicode

roar

unicode

mind blown

and the unicode character we all wanted

the character we deserve

Performance Changes

Runtime Performance
After running all the benchmakrks on the standard library on go1.9.3 vs go1.10rc1:

e nothing changed

$ benchstat go1.9.txt go1.10.txt | grep -v "\~"

MOVERLONG'REOPLE

NOTHING TOSEEHERE

source

http://memes.com/img/894487

Compiler Performance

Compiling the standard library is 10% faster!

$ benchstat go1.9.3.txt go.1.10rc1.txt

name
Template
Unicode
GoTypes
Compiler
SSA
Flate
GoParser
Reflect
Tar

XML
StdCmd

old time/op

234ms
107ms
742ms
3.50s
6.95s
149ms
189ms
476ms
134ms
258ms
19.1s

H H H H+ H

4%
1%
2%
3%
4%
2%
3%
5%
1%
6%
1%

new time/op

231ms
109ms
744ms
3.54s
9.04s
147ms
183ms
489ms
220ms
266ms
17.1s

Following https://golang.org/x/tools/cmd/compilebench.

Run on a Google Compute Engine instance with 8 cores.

e e R s o S o S S S

4%
6%
2%
5%
5%
5%
3%
6%
3%
6%
3%

+29.98%
-1.53%
-3.44%
+2.90%
+64.14%
+2.90%
-10.57%

(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.
(p=0.

101
211
905
393
000
035
002
043
000
043
000

n=10+8)
n=9+10)
n=9+10)
n=10+10)
n=10+10)
n=10+9)
n=9+9)
n=10+10)
n=9+10)
n=10+10)
n=10+10)

https://golang.org/x/tools/cmd/compilebench

Garbage Collector History in Tweets

go1.5

Brian Hatfield @brianhatfield - 19 Aug 2015 v
Amazing GC pause time improvements in Go 1.5.

0L Paass ()

o

me

| Full production
V Canary Deploy (1 host) 1 1'°"°“‘

o . | Z il

ATITHIIEUIA IR BIIIN B ERIEM IR ISV DIB PRI EB IS IV ILINIII0I0I0I 0NN

4 10 3 227 ¥ 230

go 1.6

Brian Hatfield @brianhatfield - 28 Jan 2016
They did it again in Go 1.6 RC 1!

GC Pause (ms)

50.0

30.0
20,0
10.0}
0
11:00 12:00 13:00

“ 4 23 144 ¥ 165

go 1.7

Brian Hatfield @brianhatfield - 22 Aug 2016 v

Excited to canary Go 1.7! Continued improvement in GC pause, and
improvements in various request latencies/perf!

GC Pause (ms)

et
.~ Canary
. Deploy

VA f\ A

G i al | AT

Go1.7 CanaV | Al /Y U I'a I'P\"I sul’l,
1P U

18:00 18:10 1820 18:30 18:40 18:50 19:00 1910 19:20 1930 1940 1950 20:00 N b . g il i b

4 4 23 39 ¥ 92

g0 1.8 (beta 1)

Brian Hatfield @brianhatfield - 1 Dec 2016
SUB. MILLISECOND. PAUSE. TIME. ON. AN. 18. GIG. HEAP.

(Trying out Go 1.8 beta 1!)

GC Pause (ms)

6.0

App Warmup ATy

#TI
Go 1.8 (beta 1)

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50

43 332 ¥ 502

g0 1.9 (beta 1)

Brian Hatfield @brianhatfield - 23 Aug 2017 v
1.9rc2 canary: sub-millisecond pause time GC (18GB heap). Same as 1.8.3.

If you're not on 1.8.3, upgrade or try 1.9rc2.

- GC Pause (18GB Heap)

30

20

pause time, ms

12:00 13:00 14:00 15:00 16:00 17:00

and finally, go 1.10

and finally, go 1.10

‘& Francesc

Ny @francesc

Replying to @brianhatfield

waiting for the 1.10rc1 stats for my "State of
Go" talk ... ©

12:49 PM - 2 Feb 2018

stikes NENG

Q 1 [

«
G

and finally, go 1.10

m Brian Hatfield 1105 p/
‘ Figured I'd find you here (%

"™\ Francesc Campoy 11:05 P\
% oh hey!

ﬂ Brian Hatfield 11.07 P/
Hey!

Running a canary now but it's gonna take some extra time for reasons

Initial impressions seem to not be different however.

V' oh, that's what | expected indeed (%

“™\" Francesc Campoy 11:37 P\
%" do you mind if | use a screenshot of this conversation for my talk?

feel free to use your next message to say hi to the audience 22

m Brian Hatfield 11:39 v
F hahaha! hi, FOSDEM 2018!! Sure, screenshot away (*:

and then this morning ...

and the this morning ...

Cached Request Performance (ms)

0.02

0
18:50 18:55 19:00 19:05 19:10 19:15 19:20 19:25 19:30 19:35 19:40 19:45

Brian Hatfield m o
@brianhatfield

Go 1.10rc1 canary: no significant
performance change observations - GC
pause, request latency, CPU usage all
effectively the same as 1.9.

4:39 PM - 2 Feb 2018

A couple more changes too

archive/tar
In general, the handling of special header formats is significantly improved and expanded.
FileInfoHeader has always recorded the Unix UID and GID numbers from its os. FileInfo argument (specifically, from the system-dependent information returned by the FileInfo's Sys method) in the returned Header. Now it also records the
user and group names corresponding to those IDs, as well as the major and minor device numbers for device files.
The new Header. Format field of type Format controls which tar header format the Writer uses. The default, as before, is to select the most widely-supported header type that can encode the fields needed by the header (USTAR if possible, or else
PAX if possible, or else GNU). The Reader sets Header.Format for each header it reads.
Reader and the Writer now support arbitrary PAX records, using the new Header.PAXRecords field, a generalization of the existing Xattrs field.
The Reader no lenger insists that the file name or link name in GNU headers be valid UTF-8.
When writing PAX- or GNU-format headers, the Writer now includes the Header.AccessTime and Header. ChangeTime fields (if set). When writing PAX-format headers, the times include sub-second precision.

archive/zip
Go 1.10 adds more complete support for times and character set encodings in ZIP archives.

The original ZIP format used the standard MS-DOS encoding of year, month, day, hour, minute, and second into fields in two 16-bit values. That encoding cannot represent time zones or odd seconds, so multiple extensions have been introduced to
allow richer encodings. In Go 1.10, the Reader and Writer now support the widely-understood Info-Zip extension that encodes the time separately in the 32-bit Unix "seconds since epoch” form. The FileHeader's new Modified field of type
time.Time obsoletes the ModifiedTime and ModifiedDate fields, which continue to hold the MS-DOS encoding. The Reader and Writer now adopt the common convention that a ZIP archive storing a time zone-independent Unix time also
stores the local time in the MS-DOS field, so that the time zone offset can be inferred. For compatibility, the ModTime and SetModTime methods behave the same as in earlier releases; new code should use Modified directly.

The header for each file in a ZIP archive has a flag bit indicating whether the name and comment fields are encoded as UTF-8, as opposed to a system-specific default encoding. In Go 1.8 and earlier, the Writer never set the UTF-8 bit. In Go 1.9, the
Writer changed to set the UTF-8 bit almost always. This broke the creation of ZIP archives containing Shift-JIS file names. In Go 1.10, the Writer now sets the UTF-8 bit only when both the name and the comment field are valid UTF-8 and at least
one is non-ASCII. Because non-ASCII encodings very rarely look like valid UTF-8, the new heuristic should be correct nearly all the time. Setting a FileHeader's new NonUTF8 field to true disables the heuristic entirely for that file.

The Writer also now supports setting the end-of-central-directory record's comment field, by calling the Writer's new SetComment method.
bufio
The new Reader.Size and Writer.Size methods report the Reader or Writer's underlying buffer size.
bytes
The Fields, FieldsFunc, Split, and SplitAfter functions have always returned subslices of their inputs. Go 1.10 changes each returned subslice to have capacity equal to its length, so that appending to one cannot overwrite adjacent data in
the original input.
cryptofcipher
NewOFB now panics if given an initialization vector of incorrect length, like the other constructors in the package always have. (Previously it returned a nil Stream implementation.)

cryptoftls
The TLS server now advertises support for SHA-512 signatures when using TLS 1.2. The server already supported the signatures, but some clients would not select them unless explicitly advertised.

crypto/x509
Certificate.Verify now enforces the name constraints for all names contained in the certificate, not just the one name that a client has asked about. Extended key usage restrictions are similarly now checked all at once. As a result, after a
certificate has been validated, now it can be frusted in its entirety. It is no longer necessary to revalidate the certificate for each additional name or key usage.

Parsed certificates also now report URI names and IP, email, and URI constraints, using the new Certificate fields URIs, PermittedIPRanges, ExcludedIPRanges, PermittedEmailAddresses, ExcludedEmailAddresses,
PermittedURIDomains, and ExcludedURIDomains.
The new MarshalPKCS1PublicKey and ParsePKCS1PublicKey functions convert an RSA public key to and from PKCS#1-encoded form.
The new MarshalPKCS8PrivateKey function converts a private key to PKCS#8-encoded form. (ParsePKCS8PrivateKey has existed since Go 1.)
crypto/x509/pkix
Name now implements a String method that formats the X.509 distinguished name in the standard RFC 2253 format.

Go 1.10 release notes (DRAFT)

https://beta.golang.org/doc/go1.10

Changes To The Community

Women Who Go

s

3
5
Greenland “‘Q
=)

s

Colombia | v { {,

— et

L~ p
-) 1
gam I: I Isw Madagascar J '
gl Australia 5
[TP,
South Africa g e Y
1

26 chapters already - 10 more than last year! www.womenwhogo.org

http://www.womenwhogo.org/

Women Who Go Leaders

CEO/ Global Visionary & Lead
Maartje Eyskens

S
Head of New Chapters
Daniela Petruzalek

CFO / Financial Director
Veronica Lopez

Head of Support
Carolyn Van Slyck

Go meetups

Map Satellite

= Map data ©2018 Google. INEG! | Terms of Usi

WA

Gophers all around the world! (367 meetups on go-meetups.appspot.com)

http://go-meetups.appspot.com/

Conferences:

e Go Devroom FOSDEM Today and here! £+

e GopherCon India - March in Pune, India

e GopherCon Russia - March in Moscow, Russia

e GOSF - March in San Francisco, USA

e Gotham@Go - April in New York, USA

e GopherCon SG - May in Singapore

e GopherCon Europe - June in Reykjavik, Iceland

e GopherCon Denver - August in Denver, USA

e GopherCon Brasil - September in Floriandpolis, Brazil
e GolLab - October in Florence, Italy

e dotGo - March 2019 in Paris, France

Schedule

The State of Go
What's new in Go 1.10

I Advanced Go debugging with Delve

Testing and Automation in the Era of Containers
(with Go)

Networking deepdive
From net.Dial to gRPC

Upspin and a future of the Internet
My vision of Rob Pike's Upspin as a basis for a decentralized Internet

Dep Deep Dive!
Networking Swiss Army Knife for Go

The case for interface{}
When and how to use empty interface

Google’s approach to distributed systems observability for Go
Creating GopherJS Apps with gRPC-Web
Building and testing a distributed data store in Go

I Computer Vision Using Go And OpenCV

Make your Go go faster!
Optimising performance through reducing memory allocations

I Distributing DevOps tools using GoLang and Containers, for Fun and Profit!
I AMENDMENT DNA sequencing performance in Go, C++, and Java

Go Lightning Talks
Come speak!

Francesc Campoy

Derek Parker

Veronica Lopez

Michael Hausenblas

Gildas Chabot

Sam Boyer
Roman Mohr

Sam Whited

Jaana Dogan (JBD)
Johan Brandhorst
Matt Bostock

Ron Evans

Bryan Boreham

Lucy Davinhart
Pascal Costanza

Francesc Campoy, Maartje Eyskens

10:30

11:00
11:30

12:00

12:30

13:00
13:30
14:00

14:30
15:00
15:30
16:00
16:30

17:00
17:30
18:00

11:00

11:30
12:00

12:30

13:00

13:30
14:00
14:30

15:00
15:30
16:00
16:30
17:00

17:30
18:00
19:00

Enjoy the rest of the day!

Gopher by the amazing Ashley McNamara

Thank you

Francesc Campoy

VP of Developer Relations at source{d}
@francesc

campoy@golang.org
https://sourced.tech

http://twitter.com/francesc
mailto:campoy@golang.org
https://sourced.tech/

