
The State of Go
Where we are on February 2018

Francesc Campoy
VP of Developer Relations at source{d}

Time �ies

Go 1.8 is one year old (Happy Birthday!)

Go 1.9 is already 6 months old!

Go 1.10rc1 was released on January 25th.

Go 1.10 is about � to be released!

Notes

The slides are already available on campoy.cat/l/sog110

Most of the code examples won't run except locally and using Go 1.10.

The playground still runs Go 1.9.

� do not send issues about the slides not running correctly online!

https://campoy.cat/l/sog110

Agenda

Changes since Go 1.9:

The Language

The Ports

The Tooling

The Standard Library

The Performance

The Community

Changes To The Language

Changes To The Language

source

http://ukrokuchannels.blogspot.be/2013/11/roku-uk-channel-store-weekly-roundup-35.html

Ports

New Ports

source

https://timesofindia.indiatimes.com/world/rest-of-world/snow-in-the-sahara-desert-it-happened-this-week-in-ain-sefra-algeria/articleshow/56114067.cms

Notes On Existing Ports

FreeBSD: requires FreeBSD 10.3 or later

NetBSD: works but requires NetBSD 8 ... which is not released yet

OpenBSD: next version will require OpenBSD 6.2

OS X: next version will require OS X 10.10 Yosemite

Windows: next version will require Windows 7 (no more XP or Vista)

32-bits MIPS have now a new GOMIPS variable (hard�oat | softfloat)

One More Note On Existing Ports

It's rare that I laugh out loud while reading GitHub issues.

Changes To The Tooling

Changes To The Tooling

In two words: easier and faster.

Easier set-up

GOPATH became optional in Go 1.8.

GOROOT is now optional too, deduced from the binary path.

A new variable GOTMPDIR was added to control where temporary �les are created.

Faster tools via caching

go install now caches the result of compiled packages.

go install and go build are much faster in general as a result

you won't need go build -i anymore!

It seems the pkg directory might eventually disappear!

Testing

Also caches results, everything is faster

➜ go test strings
ok strings (cached)

In order to bypass the cachee use -count=1

➜ go test -count=1 strings
ok strings 0.295s

Also runs vet, some of your tests might fail.

Also:

coverprofile can be done over many tests too

new -failfast and -json �ags

A Small Detour

Three-Index Slicing

Did you know you can use three values for slicing?

 text := []byte("Hello FOSDEM!")
 fmt.Printf("text: %s", desc(text))

 hello := text[0:5]
 fmt.Printf("hello: %s", desc(hello))

 hello = append(hello, '#')
 fmt.Printf("hello: %s", desc(hello))

 fmt.Printf("text: %s", desc(text)) Run

Three-Index Slicing (cont.)

You can control the capacity of the resulting slice.

 text := []byte("Hello FOSDEM!")
 fmt.Printf("text: %s", desc(text))

 hello := text[0:5:5]
 fmt.Printf("hello: %s", desc(hello))

 hello = append(hello, '#')
 fmt.Printf("hello: %s", desc(hello))

 fmt.Printf("text: %s", desc(text)) Run

gofmt

Small change in formatting of three-index slicing expressions.

Before:

a[i : j:k]

Now:

a[i : j : k]

This might break some of your CI tests (it broke some of mine).

Changes To The Standard Library

Changes To The Standard Library

No new packages with Go 1.10

Trivia: Do you remember which new package was added with Go 1.9?

Changes to bytes

Fields, FieldsFunc, Split, and SplitAfter limit the capacity of the returned slices.

playground

 text := []byte("Hello FOSDEM!")
 fmt.Printf("text: %s", desc(text))

 hello := bytes.Fields(text)[0]
 fmt.Printf("hello: %s", desc(hello))

 hello = append(hello, '#')
 fmt.Printf("hello: %s", desc(hello))

 fmt.Printf("text: %s", desc(text)) Run

https://play.golang.org/p/efBt6pBszef

Changes to �ags

This is minor, but I am very happy about it!

Before �

-s int
 some other stuff
it's long to explain
-z int
 some number (default 42)

Now �

-s int
 some other stuff
 it's long to explain
-z int
 some number (default 42)

 stuff := flag.Int("s", 0, "some other stuff\nit's long to explain")
 z := flag.Int("z", 42, "some number")
 flag.Parse() Run

Changes to go/doc

For a type T, functions returning slices of T, *T, or **T are now linked to T.

Those functions now appear in the Funcs list of the type, not the package.

Example:

package things

// Thing is stuff.
type Thing struct{}

// NewThing returns a new thing.
func NewThing() *Thing { return nil }

// ManyThings returns many new things.
func ManyThings() []Thing { return nil }

Changes to go/doc (cont.)

Before �

package things // import "github.com/campoy/talks/go1.10/things"

func ManyThings() []Thing
type Thing struct{}
 func NewThing() *Thing

Now �

package things // import "github.com/campoy/talks/go1.10/things"

type Thing struct{}
 func ManyThings() []Thing
 func NewThing() *Thing

Changes to text/template

New {{break}} and {{continue}} for {{range}}.

Note: Interestingly, this is not implemented in the html package.

var tmpl = template.Must(template.New("example").Funcs(template.FuncMap{
 "even": func(x int) bool { return x%2 == 0 },
}).Parse(`
{{ range . }}
 {{ . }}
 {{ if even . -}}
 even
 {{ continue }}
 {{ end -}}
 odd
 {{ if eq . 5 }}
 {{ break }}
 {{ end }}
{{ end }}
`)) Run

strings

I'm sure you've written this kind of code before.

But there's some issues with it.

String creates allocations since it convers []byte to string.

There could be a better and simpler way to do this.

This uses unsafe to avoid copies in the creation of strings.

 var buf bytes.Buffer
 fmt.Fprintln(&buf, "Hello, FOSDEM gophers!")
 fmt.Printf(buf.String()) Run

 var b strings.Builder
 fmt.Fprintln(&b, "Hello, FOSDEM gophers!")
 fmt.Printf(b.String()) Run

strings.Builder �

When you're creating many strings, it is de�nitely worth it.

 for i := 0; i < 10000; i++ {
 fmt.Fprintf(w, "�")
 out = w.String()
 }

Benchmark results:

$ go test -bench=. -benchmem
goos: darwin
goarch: amd64
pkg: github.com/campoy/talks/go1.10/strings
BenchmarkBuffer-4 100 20861915 ns/op 215641272 B/op 10317 allocs/op
BenchmarkBuilder-4 3000 535081 ns/op 153647 B/op 22 allocs/op
PASS
ok github.com/campoy/talks/go1.10/strings 3.626s

strings.Builder �

When you're creating many strings, it is de�nitely worth it.

for i := 0; i < 10000; i++ {
 fmt.Fprintf(w, "�")
 // out = w.String()
}

Benchmark results:

$ go test -bench=. -benchmem
goos: darwin
goarch: amd64
pkg: github.com/campoy/talks/go1.10/strings
BenchmarkBuffer-4 3000 525691 ns/op 152056 B/op 11 allocs/op
BenchmarkBuilder-4 3000 626132 ns/op 153647 B/op 22 allocs/op
PASS
ok github.com/campoy/talks/go1.10/strings 4.072s

unicode

source

http://www.unicode.org/emoji/charts/emoji-versions.html#2017

unicode

oh my gopher!

unicode

sure ... why not

unicode

roar

unicode

mind blown

and the unicode character we all wanted

the character we deserve

Performance Changes

Runtime Performance

After running all the benchmakrks on the standard library on go1.9.3 vs go1.10rc1:

nothing changed

$ benchstat go1.9.txt go1.10.txt | grep -v "\~"

source

http://memes.com/img/894487

Compiler Performance

Compiling the standard library is 10% faster!

$ benchstat go1.9.3.txt go.1.10rc1.txt
name old time/op new time/op delta
Template 234ms ± 4% 231ms ± 4% ~ (p=0.101 n=10+8)
Unicode 107ms ± 1% 109ms ± 6% ~ (p=0.211 n=9+10)
GoTypes 742ms ± 2% 744ms ± 2% ~ (p=0.905 n=9+10)
Compiler 3.50s ± 3% 3.54s ± 5% ~ (p=0.393 n=10+10)
SSA 6.95s ± 4% 9.04s ± 5% +29.98% (p=0.000 n=10+10)
Flate 149ms ± 2% 147ms ± 5% -1.53% (p=0.035 n=10+9)
GoParser 189ms ± 3% 183ms ± 3% -3.44% (p=0.002 n=9+9)
Reflect 476ms ± 5% 489ms ± 6% +2.90% (p=0.043 n=10+10)
Tar 134ms ± 1% 220ms ± 3% +64.14% (p=0.000 n=9+10)
XML 258ms ± 6% 266ms ± 6% +2.90% (p=0.043 n=10+10)
StdCmd 19.1s ± 1% 17.1s ± 3% -10.57% (p=0.000 n=10+10)

Following https://golang.org/x/tools/cmd/compilebench.

Run on a Google Compute Engine instance with 8 cores.

https://golang.org/x/tools/cmd/compilebench

Garbage Collector History in Tweets

go 1.5

go 1.6

go 1.7

go 1.8 (beta 1)

go 1.9 (beta 1)

and �nally, go 1.10

and �nally, go 1.10

and �nally, go 1.10

and then this morning ...

and the this morning ...

A couple more changes too

Go 1.10 release notes (DRAFT)

https://beta.golang.org/doc/go1.10

Changes To The Community

Women Who Go

26 chapters already - 10 more than last year! www.womenwhogo.org

http://www.womenwhogo.org/

Women Who Go Leaders

Go meetups

Gophers all around the world! (367 meetups on go-meetups.appspot.com)

http://go-meetups.appspot.com/

Conferences:

Go Devroom FOSDEM Today and here! �

GopherCon India - March in Pune, India

GopherCon Russia - March in Moscow, Russia

GoSF - March in San Francisco, USA

GothamGo - April in New York, USA

GopherCon SG - May in Singapore

GopherCon Europe - June in Reykjavik, Iceland

GopherCon Denver - August in Denver, USA

GopherCon Brasil - September in Florianópolis, Brazil

GoLab - October in Florence, Italy

dotGo - March 2019 in Paris, France

Schedule

Enjoy the rest of the day!

Gopher by the amazing Ashley McNamara

Thank you

Francesc Campoy
VP of Developer Relations at source{d}
@francesc
campoy@golang.org
https://sourced.tech

http://twitter.com/francesc
mailto:campoy@golang.org
https://sourced.tech/

