
1

Efficient implementation of a spectrum scanner
on a software-defined radio platform

François Quitin, Riccardo Pace
Université libre de Bruxelles (ULB), Belgium

• Lots of technicians driving around on all kind of missions
 Use (reasonably) cheap hardware to do opportunistic scanning

• How to use SDRs to do (pseudo)-realtime spectrum scanning?
– USRP-N210
– Single-board host computer (e.g. Raspberry Pi form factor)
– No user intervention

Context and objectives

2

Regulators need to detect abusive usage of RF spectrum

• http://www.ni.com/white-paper/13882/en/

• « Spectrum analyzer with USRP, GNU Radio and MATLAB »
http://www.av.it.pt/conftele2009/papers/114.pdf

• https://github.com/Edgarware/USRP_Spec_Analyzer

• …

Problems with these implementations?
– Scanning bandwidth may be larger than USRP bandwidth

– Fully software-based (Python, Labview, C++), so hard to do real-time
on low-weight host

 Solution: implement the spectrum scanner on the USRP FPGA !
– Use software for scan coordination and data recording

Context and objectives

3

What’s wrong with existing codes ?

http://www.ni.com/white-paper/13882/en/
http://www.av.it.pt/conftele2009/papers/114.pdf
https://github.com/Edgarware/USRP_Spec_Analyzer

• Overall system design
– Intro to FPGA: difference with μC

– Spectrum scanner design

• FPGA design
– FFT module

– Square magnitude module

– Energy detection module

– Data synchronizer module

• Software design
– Usefull low-level UHD commands

– Retuning and streaming

– GUI with gnuplot-iostream

• Some results

• Demo time!

Outline

4

What is an FPGA …

5

… and why can it be faster than a microcontroller?

- Executes 1 instruction / cycle
- Serial processing

- Compilation: converts HLL to micro-
instructions

- Limited by duration of execution
- HLL: C++, Python, …

- Processes N insctructions / cycle
- Parallel processing

- Synthesis and P&R: converts « HLL » to
inter-connection diagram

- Limited by size of circuitry
- « HLL »: VHDL or Verilog

The FPGA in the USRP

• Digital up- and down conversion

• Decimation/interpolation

• Formating of samples for UHD drivers

6

Does some basic stuff, but still some space left !

Default FPGA
image

Flip Flops 42%

4-input LUT 65%

Slices 82%

DSP48A 24%

RAM16BWER 32%

Decim

Interp
CIC

DDC

DUC

UHD Network
Driver Command
& Control Data

Streaming

32 bit RISC
processor

FPGA – Xilinx Spartan 3A-DSP

from
ADC

to DAC

to/from
Ethernet

Hardware elements
available in the FPGA

Spectrum scanner design

• FPGA to perform CPU-intensive task

• Software to coordinate retuning of carrier frequency and log data

7

Mixed FPGA-software architecture

• Overall system design
– Intro to FPGA: difference with μC

– Spectrum scanner design

• FPGA design
– FFT module

– Square magnitude module

– Energy detection module

– Data synchronizer module

• Software design
– Usefull low-level UHD commands

– Retuning and streaming

– GUI with gnuplot-iostream

• Some results

• Demo time!

Outline

8

FPGA design

• Modules that can be cascaded

• 2 inputs and outputs for each module

– One for the actual data

– One that indicates if data is valid

• Two versions of the Energy Detection Module

– Fixed threshold (set manually from software)

– Automatic threshold (mostly automatic, partial manual setting
possible)

9

Detailled FPGA architecture

FFT |Y|2

ENERGY
DETECTION

MODULE

DATA SYNCH
MODULE

x[31:0]
{I,Q}

X[31:0]
{I,Q} SQM[31:0]

Y[31:0]
{D,|Y|2[30:0]}

Y[31:0]
{D,|Y|2[30:0]}

strobe_in dv_fft dv_sqm dv_Y strobe_out

FPGA design

• FFT module

– 1024-point FFT (not configurable)

10

Details of the different modules

FFT |Y|2

ENERGY
DETECTION

MODULE

DATA SYNCH
MODULE

x[31:0]
{I,Q}

X[31:0]
{I,Q} SQM[31:0]

Y[31:0]
{D,|Y|2[30:0]}

Y[31:0]
{D,|Y|2[30:0]}

strobe_in dv_fft dv_sqm dv_Y strobe_out

FPGA design

• Energy detection module

 𝑖=1
𝑀 𝑌 2 > 𝜆 ?

– Fixed threshold: set manually by user from software

– Automatic threshold: 𝜆 = 𝜆∗ + 𝛼𝐷𝑤𝑖𝑛𝑑𝑜𝑤

with 𝐷𝑤𝑖𝑛𝑑𝑜𝑤 =
 𝑘=𝑛
𝑛+𝑀 𝑌 𝑘 2

 𝑘=1
𝑁 𝑌 𝑘 2/𝑁

11

Details of the different modules

FFT |Y|2

ENERGY
DETECTION

MODULE

DATA SYNCH
MODULE

x[31:0]
{I,Q}

X[31:0]
{I,Q} SQM[31:0]

Y[31:0]
{D,|Y|2[30:0]}

Y[31:0]
{D,|Y|2[30:0]}

strobe_in dv_fft dv_sqm dv_Y strobe_out

Average energy over 10MHz-window

Energy over current subwindow

N-point FFTsize-M subwindow

FPGA design

• Data synchronizer module

– Readapt the rate of samples to USRP sample rate

– Ratio between USRP sample rate and fclock (=100 MHz) has to be an
integer value

– Design fully compatible with host UHD drivers

12

Details of the different modules

FFT |Y|2

ENERGY
DETECTION

MODULE

DATA SYNCH
MODULE

x[31:0]
{I,Q}

X[31:0]
{I,Q} SQM[31:0]

Y[31:0]
{D,|Y|2[30:0]}

Y[31:0]
{D,|Y|2[30:0]}

strobe_in dv_fft dv_sqm dv_Y strobe_out

FPGA design

• Our design is very cheap in ressource utilization !

13

Ressource utilization of our additional blocks

Default FPGA
image

Fixed threshold Automatic
threshold

Flip Flops 42% +3% +4%

4-input LUT 65% +3% +4%

Slices 82% +2% +4%

DSP48A 24% +7% +9%

RAM16BWER 32% +12% +14%

• Overall system design
– Intro to FPGA: difference with μC

– Spectrum scanner design

• FPGA design
– FFT module

– Square magnitude module

– Energy detection module

– Data synchronizer module

• Software design
– Usefull low-level UHD commands

– Retuning and streaming

– GUI with gnuplot-iostream

• Some results

• Demo time!

Outline

14

Software design

• Set FPGA register from host side (threshold, subwindow size, …)

• Specify time of command (retune of carrier frequency)

15

Some usefull low-level UHD commands

// set threshold of the energy detector module
usrp->set_user_register(TH_ADDRESS,threshold,0);

// set the command in time
usrp->set_command_time(cmpd_time[i]);
t_result[i] = usrp->set_rx_freq(tune_request[i]);

Software design: re-tuning and streaming

• With this laptop: 250 ms for scanning 1 GHz band w/o overflows

16

Send future retune commands while streaming

…
for k=0 to k=7 do

set command time @ cmd_time[k]
tune_request[k]
rx stream command @ cmd_time[k]+delta

end for
while (1) do

receive samples
k++
set command time @ cmd_time[k]
tune_request[k]
rx stream command @ cmd_time[k]+delta

end while

Retune lock
time,
typically 1 ms

Software design: light-weight GUI

• Low refresh rate to avoid hogging CPU

• Data is also saved to a log file

17

Using gnuplot-iostream

SQM.dat

detection.dat

• Overall system design
– Intro to FPGA: difference with μC

– Spectrum scanner design

• FPGA design
– FFT module

– Square magnitude module

– Energy detection module

– Data synchronizer module

• Software design
– Usefull low-level UHD commands

– Retuning and streaming

– GUI with gnuplot-iostream

• Some results

• Demo time!

Outline

18

Some results in the lab

• Bluetooth + Multicarrier signal

19

when connecting signal generator to USRP

Some results outside the lab

20

Scanning for FM stations

Some results right here

• Demo of GSM and 3G spectrum scan

• Code available on Github

https://github.com/fquitin/energy_detection_system

• What’s in the code?

– FPGA source code

– FPGA images, flashable on the USRP

– Host C++ source code and CMake files

– Some Matlab scripts with testbenches and postprocessing scripts

21

Demo time !

https://github.com/fquitin/energy_detection_system

