
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Degree Thesis

Automatic signal detection and
classification with software define radio

Advisors:
prof. Maurizio Martina
prof. François Quitin

Candidate:
Riccardo Pace

Conducted at Université Libre de Bruxelles

October 2017

To Michela

Acknowledgments

My thesis has been written down and it is ready to be printed, at last. Only the
acknowledgements need to be written. In my university years in Turin and the last
months spent in Brussels, I met a lot of people who helped me to learn and grow. I
would like to thank all of them.
First, I would like to thank my second advisor, François Quitin, from BEAMS de-
partment at Université Libre de Bruxelles. He gave me the opportunity to develop
my thesis work at the ULB and made my experience abroad wonderful. His office
door was always open for my questions and he directed my research in the best
possible way. Thank you to the whole BEAMS department for the lab support and
their help.
I would also like to thank my advisor Maurizio Martina from DET at Politecnico di
Torino. I am grateful to him for all his comments and suggestions on this thesis.
I would also like to acknowledge Ing. Wim Aerts at BIPT who showed great interest
in my thesis, especially during the intermediate meetings, commenting my work and
suggesting solutions.
Thanks to my colleagues and friends, Gabriele, Simone and Gabriele, for all the
projects carried out during these academic years, and for creating a great method
to work all together as a team.
I want and I must express all my gratitude to my parents, Michele and Carmen,
for giving me the opportunity to study and for providing me with continuous en-
couragement during my studying process; to my brothers, Gabriele and Andrea,
and my sister-in-law, Elsa, for providing me with unfailing support and continuous
incentive. I would like to thank also my uncles, Piero and Carla, for helping me do
my best.
I cannot forget to thank my fabulous roommates: Roberta, Marta, Noemi and Gi-
acomo, for the wonderful time shared together in Turin. One special acknowledge
is to all my friends: Eleonora, Andrea, Michela, Fabrizio, Luisa, Andrea, Francesca,
Marta, Eliana, Andrea, Gabriele, Ilenia, Alberto, Anna and Paola for providing me
with super encouragement and support during these last three years.
Finally, I would like to thank all the people who I forgot to mention, but helped me
in all these years of study.

I

II

Summary

This master thesis describes how an automatic spectrum scanner and signal detec-
tor for radio frequency (RF) has been implemented using a software define radio
platform. A first analysis of the various spectrum sensing techniques permits to un-
derstand which kind of resources are needed to implement the detection of signals
(Chapter 2). Secondly, a study of the USRP-N210 device, used for the scanning
implementation has been carried out in order to evaluate how and which of the
previous techniques can be embedded in it (Chapter 3).
Thanks to the data/information acquired with the previous analysis two different
algorithms are proposed: a manual and an automatic approach. On the basis of
these two algorithms the respective hardware and software tasks have been defined
(Chapter 4) creating a mixed FPGA/Software architecture. This permits to balance
in a good way the work load of the device and the host CPU connected to the device
efficiently.
The design flow for the hardware part follows a chain structure designing different
hardware modules which are connected in a cascade mode (Chapter 5). Some main
modules are shared among the two architectures (corresponding to the respective
algorithm) and others are specific to the application.
The software part (Chapter 6) exploits some distinct features of the device used to
implement the system. The main task executed by the software is related to control
the SDR device especially to manage the tune operation of the receiving carrier
frequency.
Different results have been analysed: from the FPGA resources usage side to the
system detection performances (Chapter 7). Some experiments on the designed
spectrum scanner system were performed and a real case of spectrum scan with the
FM broadcasting in Brussels has been evaluated.

III

IV

Table of contents

Acknowledgments I

Summary III

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

2 Theoretical background 3

2.1 Spectrum sensing . 3

2.1.1 Energy detection . 4

2.1.2 Matched filter . 5

2.1.3 Cyclostationary detection . 6

2.1.4 Walvelet detection . 7

2.1.5 Summary Spectrum Sensing Techniques 7

2.2 Energy Detection: Threshold Study 8

2.3 Fast Fourier Transform review and architectures 11

2.3.1 FFT Algorithms . 12

2.3.2 Implementation Architectures 14

3 Software Defined Radio: USRP 17

3.1 Introduction . 17

3.2 Software define radio . 17

3.3 USRP - Universal Software Radio Peripheral 18

3.3.1 Hardware . 19

3.3.2 Data Flow in USRP system 21

3.3.3 FPGA resources . 22

3.3.4 Host Software . 24

3.3.5 Practical Aspects . 24

V

4 Automatic Spectrum Scanning System 27
4.1 Introduction . 27
4.2 System Design . 27

4.2.1 FPGA . 28
4.2.2 Software . 29

4.3 Spectrum Sensing Algorithm . 29
4.3.1 Fixed Threshold . 30
4.3.2 Adaptive Threshold . 31

5 Hardware implementation of Energy Detection 33
5.1 Introduction . 33
5.2 Fast Fourier Transform Module . 34

5.2.1 WR RAM Controller . 38
5.2.2 FFT Controller . 41

5.3 Square Magnitude Module . 44
5.4 ED Module Fixed Threshold . 46

5.4.1 Control Unit Detection . 49
5.4.2 Control Unit Packing . 52

5.5 ED Module Adaptive Threshold . 54
5.5.1 DC Elimination Module . 54
5.5.2 D factor Module . 55
5.5.3 Energy Detection Unit . 57

5.6 Data Synchronizer . 61

6 Software Scanning Technique and Implementation 65
6.1 Introduction . 65

6.1.1 Tuning Method and Policies 65
6.1.2 Software Enviroments . 69
6.1.3 Software Program . 69

7 Results 75
7.1 Introduction . 75
7.2 Hardware simulation and synthesised resources comparison 75

7.2.1 Simulation . 75
7.2.2 Synthesised resources comparison 77
7.2.3 Timing Performances . 78

7.3 System test, characterization and performances 78
7.3.1 FFT Tests . 79
7.3.2 Energy Detection system Tests 79
7.3.3 Characterization of Energy Detection System 83
7.3.4 Spectrum Scan Speed . 88

VI

7.4 FM broadcasting scan experiment . 88

8 Conclusion 91

A System Characterization 93
A.1 Probabilities of Detection Fixed Threshold Architecture 93
A.2 Probabilities of Detection Adaptive Threshold Architecture 98

Bibliography 101

VII

VIII

List of figures

2.1 Energy detection architecture in frequency domain 4
2.2 Energy detection architecture in time domain 4
2.3 Matched filter architecture using pilot primary system information . . 5
2.4 Cyclostationary detection architecture 7
2.5 Walvelet detection architercture . 7
2.6 Two points Butterfly . 13
2.7 Four points Butterfly . 13
3.1 Simple structure of an SDR receiver 18
3.2 USRP N210 Block diagram from [1] 20
3.3 Data flow USRP host . 21
3.4 FPGA functionalities . 22
3.5 SOC in FPGA’s USRP [2] . 23
3.6 FPGA custom points . 24
4.1 High level Architecture of Spectrum Scanning System 28
5.1 Top view of FPGA custom module 33
5.2 Top view of FFT module . 36
5.3 Timing diagram of time domain samples 36
5.4 Control Unit FFT module . 37
5.5 FFT Controller . 38
5.6 WR RAM Controller . 39
5.7 Datapath WR RAM Controller . 39
5.8 Control Unit WR RAM Controller ASM chart 40
5.9 Control Unit WR RAM Controller Control ASM chart 41
5.10 FFT Controller . 42
5.11 ASM chart FFT Controller . 43
5.12 Control ASM Chart FFT Controller 44
5.13 High Level architecture SQM unit . 45
5.14 SQM implemented architecture . 46
5.15 Timing diagram SQM Unit dv signal vs data bus 46
5.16 Energy Detector top level (Fixed Threshold) 47
5.17 Datapath Energy Detector (Fixed Threshold) 49

IX

5.18 Control Unit ED Module (Fixed Threshold) 50

5.19 ASM chart Control Unit Detection (Fixed Threshold) 51

5.20 Control ASM chart Control Unit Detection (Fixed Threshold) 52

5.21 ASM chart Control Unit Packing . 53

5.22 Control ASM chart Control Unit packing 53

5.23 Energy Detector Adaptive Threshold 54

5.24 DC Elimination Module . 55

5.25 D factor module . 56

5.26 Energy Detector top level (Adaptive Threshold) 58

5.27 Datapath Energy Detector (Adaptive Threshold) 59

5.28 Control Unit (Adaptive Threshold) 60

5.29 ASM chart control unit detection (Adaptive Threshold) 62

5.30 Control ASM chart control unit detection (Adaptive Threshold) . . . 63

5.31 Data Synchronizer Module . 64

5.32 Data Synchronizer Timing Diagram 64

6.1 USRP and WBX block diagram . 66

7.1 Simulation Configuration . 76

7.2 Comparison between Matlab FFT result and module simulation result 76

7.3 Laboratory test set-up . 79

7.4 Comparison between FFT obtained from time-domain samples (on
top) and FFT obtained with our FPGA implementation (bottom) . . 80

7.5 Comparison between FFT on Matlab, FFT obtained FPGA imple-
mentation and WBX noise variance level 80

7.6 Spectrum scanning system output, (top) FFT result and (bottom)
detection result . 81

7.7 Spectrum scanning system output with Bluetooth and Multicarrier
(21 carriers) signals, (top) FFT result ([dB]) and (bottom) detection
result . 82

7.8 Probability of Detection (M = 2,λ = 11) - Fixed Threshold Archi-
tecture . 84

7.9 Comparison between Probabilities of Detection changing M and λ for
a Bluetooth standard signal . 84

7.10 Probabilities of Detection (M = 2,λ = 2) - Fixed Threshold Archi-
tecture . 85

7.11 Comparison between Probabilities of Detection changing M and λ for
a Bluetooth standard signal with Adaptive Threshold Architecture . . 85

7.12 Comparison between Probabilities of Detection of Fixed vs Adaptive
Threshold for a Bluetooth standard signal (M = 2) 86

7.13 Comparison between Probabilities of Detection of Fixed vs Adaptive
Threshold for a Bluetooth standard signal (M = 8) 86

X

7.14 Spectrum scanning system output, (top) FM spectrum result and
(bottom) detection result . 89

7.15 Map of FM stations positions detected respect the University position 90
A.1 Probabilities of Detection (M = 2,λ = 14) - Fixed Threshold Archi-

tecture . 93
A.2 Probabilities of Detection (M = 8,λ = 14) - Fixed Threshold Archi-

tecture . 94
A.3 Comparison between Probabilities of Detection changing M and λ for

a GSM standard signal . 94
A.4 Comparison between Probabilities of Detection changing M and λ for

a NADC standard signal . 95
A.5 Comparison between Probabilities of Detection changing M and λ for

a TETRA standard signal . 96
A.6 Comparison between Probabilities of Detection changing M and λ for

a WCDMA standard signal . 97
A.7 Probabilities of Detection (M = 8,λ = 8) - Adaptive Threshold Ar-

chitecture . 98
A.8 Comparison between Probabilities of Detection changing M and λ for

a GSM standard signal with Adaptive Threshold Architecture 98
A.9 Comparison between Probabilities of Detection changing M and λ for

a NADC standard signal with Adaptive Threshold Architecture . . . 99
A.10 Comparison between Probabilities of Detection changing M and λ for

a TETRA standard signal with Adaptive Threshold Architecture . . 99
A.11 Comparison between Probabilities of Detection changing M and λ for

a WCDMA standard signal with Adaptive Threshold Architecture . . 100

XI

XII

Chapter 1

Introduction

1.1 Motivation

With the increased use of portable devices and the growing demand for greater data
transmission rates, an increasing request of spectrum channels has been observed
over the last decade.
All the available spectrum channels are licensed by a specific Institute in each coun-
try, and the licenses can change for different areas. Users buy expensive licenses
to transmit on specific frequency bands and the regulator must guarantee a clean
spectrum and make sure that there is no misuse of spectrum.
In Belgium the ”BIPT” (Belgian Institute for Postal services and Telecommunica-
tions) has the task to control the correct use of spectrum frequency bands and detect
abusive usage of radio frequency (RF). To carry out this control, the BIPT has some
vehicles, with proper measurement instruments mounted inside, which travel along
the whole Belgium to store data and also understand the appropriate spectrum us-
age by the transmitting companies.
Traditionally, spectrum analyzers are used to perform spectrum scanning, but spec-
trum analysers tend to be bulky, expensive and fragile.
In the context of ever-faster digital logics and increasing quality requirements, wire-
less transmitter and receiver are moving towards software-define platforms.
Recently, software-defined radio (SDR) has gained importance and has become an
alternative solution for a wide variety of applications, for example the spectrum
monitoring. These devices are cheaper and less bulky than the spectrum analysers,
so that they could be mounted into the vans of the regulator technicians.
By exploiting the SDR features, an automatic spectrum scanner system can be
implemented, whose aim is to continuously scan the RF spectrum and to detect
whether any signals are present in a stand-alone mode.

1

1 – Introduction

1.2 Objective

The objective of this thesis is to implement an automatic spectrum monitoring sys-
tem on a USRP-N210 software define radio, a popular and cheap model. The system
needs to scan the spectrum for RF signals, detect if the bands are occupied or not,
compare the signals detected with a database (also taking into account geographic
location) and alert the user when an infraction is detected.

One common problem when using USRPs is that the CPU load of the host com-
puter becomes unacceptable, due to the high sample rates. Taking advantage of the
USRP-N210 features, a mixed FPGA/software approach, for implementing a spec-
trum monitoring system, could be used in order to decrease the host CPU workload.

2

Chapter 2

Theoretical background

2.1 Spectrum sensing

With the increasing usage of the Cognitive radio techniques, for realizing comfort-
able society by a wireless communication system, the request and usage of wireless
resources has become the major issue in the world. Thanks to this context the
spectrum sensing has gained an increasing interest by the researchers. This Section
has the aim to give a brief overview of the spectrum sensing techniques available in
literature.

The Conventional spectrum sensing can be modelled as a single primary system
to decide between two hypotheses:

y[n] =

{
w[n] H0

s[n] + w[n] H1
(2.1)

where y[n] is the complex signal received by the device, s[n] the transmitted
signal and w[n] is the additive white Gaussian noise (AWGN), and n can be from
1 to N representing the observation interval. For a more detailed model the signal
s[n] has to be multiplied by the channel gain.
H0 represents the null hypothesis that no transmitted signal is present and H1

represents the presence of a signal.
The main spectrum techniques can be listed as following:

• Energy detection;

• Matched filter ;

• Cyclostationary detection;

• Walvelet detection.

3

2 – Theoretical background

2.1.1 Energy detection

If the signal to be detected is unknown, the energy detection method is the optimal
solution to find the signals inside a spectrum.
In this approach the received energy signal is measured over an observation time to
determine the occupancy of the spectrum. Two ways exist to evaluate the energy:
in the time domain and in the frequency domain, thanks to the Parseval’s Theorem.
The energy in the time domain is defined as following:

E =
N∑
n=1

|y[n]|2 (2.2)

The received signal (complex or real) is squared and integrated over an observa-
tion interval T. The result of this operation is compared with a threshold to decide
the presence of some signal. The model of the decision can be represented with the
following system (2.3):

D =

{
H0 E Q λ
H1 otherwise

(2.3)

Where the λ factor is the threshold. If the frequency domain is selected, re-
calling the Parseval’s theorem the energy can be evaluated and compared with the
threshold.

The Figure 2.1 represents the frequency domain architecture, instead the Figure
2.2 the time domain one.

A/D FFT | |2 Average M
times

Threshold
Compare

Set the Threshold

Figure 2.1: Energy detection architecture in frequency domain

A/D | |2 Integrator
Threshold
Compare

Figure 2.2: Energy detection architecture in time domain

This technique can be implemented without any a priori knowledge of the pri-
mary user signal. The threshold selection for energy detection can be a challenge

4

2.1 – Spectrum sensing

because it is very susceptible to the changing of the noise and especially to the
interference level.

2.1.2 Matched filter

When the received signal is in the presence of additive Gaussian noise the Match
filter approach can be an optimal detection method because it maximises the SNR
of the received signal. Respect the previous method, the matched filter requires a
priori knowledge of the signal received: pulse shaping, modulation type and packet
format. This approach correlates a known signal with a unknown signal to evaluate
the presence.
The mechanism is to perform a convolution of the received signal with a time-
reversed version of the assumed signal and the result is compared with a threshold.
Therefore the following binary decision can be done:

T =
N∑
n=1

y[n] ∗ x[n] (2.4)

D =

{
H0 T Q λ
H1 otherwise

(2.5)

The typical usage of the matched filter is the radar transmission. If partial in-
formation of the signal to be detected is known, such as pilots or preambles, the use
of this method is still possible for a right detection. The advantage of using this
technique lies on the time to achieve a good result. However this means that for each
signal standard type a dedicated receiver is needed, which increases complexity as a
significant challenge when the target system is out of multiple possible systems(Eq
2.5).

The Figure 2.3 shows a possible architecture based on the pilot frequency of the
primary system.

A/D
Correlation over N

y[n]x*[n]
Threshold
Compare

Pilot
Xp

X

Set threshold

Figure 2.3: Matched filter architecture using pilot primary system information

5

2 – Theoretical background

2.1.3 Cyclostationary detection

Evaluating the cyclostationary features of the target signals, the transmitted signal
can be detected. The idea is to exploit the periodicity of the modulated signal such
as sine wave carries, pulse trains, repeating spreading, cyclic prefixes and hopping
sequences. The cyclostationary signals manifest correlation between separated spec-
tral components due to the spectral redundancy caused by the periodicity.
The spectral correlation is one important characteristic property of a cyclostationary
random process. On the other hand the stationary processes have not this property,
no pairs of distinct frequency components are correlated. Due to this difference, the
cyclostationary detector can distinguish the noise energy from the modulated signal
energy, because the noise is a generalized stationary process that it does not have
periodicity and also no spectral correlation.

The cyclic autocorrelation function (CAF) of the observed signal x(t) can be
evaluated as following:

Rα
x(τ) = lim

T→∞

1

T

∫ T/2

−T/2
x(t+

τ

2
)x(t− τ

2
)e−j2παtdt (2.6)

where α is the cyclic frequency.
The spectral correlation function can be computed by the discrete Fourier transform
of the Eq. 2.6 :

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ (2.7)

Substituting the expression of CAF :

Sαx (f) = lim
T→∞

lim
Z→∞

1

TZ

∫ Z/2

−Z/2
XT (t,f +

α

2
τ)X∗T (t,f − α

2
τ)dt (2.8)

where

XT (t,f) =

∫ t+T/2

t−T/2
x(u)e−j2πfudu (2.9)

The detection is performed by searching the unique cyclic frequency correspond-
ing to the peak of the spectral correlation function plane.

A standard architecture to perform the cyclostationary detection is shown in the
Figure 2.4. Usually this method is implemented in digital domain. First the spectral
components of the data through FFT are evaluated, and then direct algorithms per-
form the spectral correlation on the spectral components. As mentioned above the
main advantage of this technique for spectrum sensing is the ability to distinguish

6

2.1 – Spectrum sensing

the noise energy from the signal energy. For this aspect the method is more roboust
respect the energy detector. Moreover it can work with low SNR, but the compu-
tational processing gain can be higher than the energy one. The implementation is
more complicated and it requires more longer observation time.

A/D
Correlation

 X(f+α/2)X*(f-α/2)
Feature Detect

Average
M times

FFT

Figure 2.4: Cyclostationary detection architecture

2.1.4 Walvelet detection

The walvelet detection method treats the entire wideband as a sequence of consecu-
tive frequency sub-bands, where the power spectral characteristic is smooth within
each sub-band, but changes on the border of two neighbouring sub-bands. If the
walvelet transform is applied on the power spectral density (PSD) of the received
signal, the singularities can be located where there are holes in the spectrum. This
method is suitable for wide band signals, the walvelet approach offers advantages in
implementation cost but also in flexibility.

The Figure 2.5 shows the digital implementation of walvelet detection.

A/D PSD |X(f)| 2 Local Maximum
Detection

Walvelet
Transform

FFT

Figure 2.5: Walvelet detection architercture

2.1.5 Summary Spectrum Sensing Techniques

The analysis touched in this Section 2.1 permits to have main idea of the spectrum
sensing techniques available in literature. In the Table 2.1 is reported a summary
of the different techniques explained above.

The purpose of this thesis is to develop a spectrum scanner system able to
detect several type of signals without know any priory information of these. The
detection algorithm has to be embedded in the FPGA of the USRP N210, so a simple
architecture with low computational cost has to be considered. Analysing the Table
2.1, the Matched Filter and the Cyclostationary detection techniques cannot be
considered because they need priori information of the received signal even if they
are more robust than the other techniques. Walvelet detection instead could be a

7

2 – Theoretical background

Spectrum Sensing Pros Cons
Techniques

Energy detection • Does not require any

a priori knowledge of signal
• Cannot work with low SNR

• Low computational cost • Cannot distinguish signals

sharing the same channel

Matched Filter • Optimal detection performance • Requires a priori knowledge

of the signal

• Low computational cost • Each type of signal

requires its design

• Maximize SNR

Cyclostationary
detection

• Roboust in low SNR • It need partial information

of the transmitted signal

• Roboust to interface • High computational cost

Walvelet detection • Effective for wideband signal • Does not work for

spread spectrum signals

• High computational cost

Table 2.1: Summary Spectrum Sensing Techniques from [4]

good technique to sense signals but it is limited by the high computational cost.
The best technique that fits the purpose of the thesis is the Energy Detection; it
allows to detect signals without any priory information and with a low computational
cost. In order to evaluate sub-bands in a slice of spectrum, wide as the sample
frequency, the frequency domain architecture (Figure 2.1) has been used.
The following Section 2.2 explains methods to select the threshold for the Energy
detection sensing technique.

2.2 Energy Detection: Threshold Study

To understand if a signal is present or not an appropriate threshold has to be se-
lected. A lot of studies has been done on how to select the threshold for the energy
detection technique. The energy detection of unknown deterministic signals has
been developed by Harry Urkowitz [5] in the 1967. Starting from the mathematical
model created by him, several studies have been done to find an optimal threshold
for the detection of unknown signals.

In the energy detector system, the energy of the signal sampled is evaluated. If

8

2.2 – Energy Detection: Threshold Study

we consider the time domain, the energy is defined as:

∆ =
N∑
n=1

|y(n)|2 (2.10)

The variable ∆, also called test statistic, is compared with the threshold λ. Ex-
ploiting the Parseval’s theorem or Rayleigh’s energy theorem, the value of ∆ is
equivalent to ∆ =

∑N
k=1 |Y (k)|2 where Y (k) is the frequency domain representation

of y(n).

As reported in the Equation 2.3, two different scenarios can be distinguished.
When there is only noise (wn[n]) the detection result is false instead when there is
the sum of signal and noise, the detector’s result is true.
The noise is assumed as a random process of zero mean and variance σ2

w instead the
signal is also assumed to be random process of zero mean and variance σ2

s .
On both of the hypothesis H0 and H1, the test statistic ∆ can be modelled as a

random variable whose probability density function (PDF) is chi-square distributed.
Exploiting the Central Limit Theorem when the number of samples N is sufficiently
large, the hypothesis’s PDF can be approximated using Gaussian distribution.

Knowing these distributions two performance metrics of spectrum sensing can
be defined:

• Probability of detection (Pd)

• Probability of false alarm (Pf)

The detection probability Pd is the probability that a signal is correctly detected
through sensing. Pd can be derived from the model of the hypothesis and assume
the following expression(Equation 2.11):

Pd = P (∆ > λ|H1) = Q(
λ− (σ2

w + σ2
s)

(σ2
w + σ2

s)/
√
N/2

) (2.11)

The false alarm probability Pf instead is defined as the probablity that a signal
is detected inside the spectrum even if the signal is not present. Pf assumes the
following expression(Equation 2.12):

Pf = P (∆ > λ|H0) = Q(
λ− σ2

w

σ2
w/
√
N/2

) (2.12)

From the model of the signal and the noise the SNR can be defined as : γ =
σ2
s/σ

2
w. The two probabilities defined above are both dependent on the threshold λ.

9

2 – Theoretical background

Hence the decision threshold can be derived for a target Pd or Pf .
From the Equation 2.11 of Pd the threshold, λPd , can be evaluated for a constant
detection rate (CDR):

λPd = (σ2
w + σ2

s)(1 +
Q−1(Pd)√

N/2
) (2.13)

Similarly, using the Pf can be chosen a threshold for a target constant false alarm
rate (CFAR) :

λPf = σ2
w(1 +

Q−1(Pf)√
N/2

) (2.14)

The CFAR threshold depends by the noise variance, the number of samples and
the value of Pf ; instead the CDR needs also the signal variance knowledge and
obviously the Pd. Recalling the definition of SNR, the CDR threshold can be ma-
nipulated; the signal variance can be rewritten based on σ2

w and γ. For both the
thresholds, the noise variance has to be estimated in order to evaluate the threshold.

As can be noticed in the Equations 2.11 and 2.12, the sensing performances are
strongly affected by the selection of the threshold. A fixed threshold approach is
very common in the conventional energy detection method. Moreover usually the
CFAR threshold is applied in energy detection algorithms.
The threshold based on CDR can be used to increase the sensitivity of signal detec-
tion, the Pd as to be settled as high as possible. On the other hand if the idea is to
have a robust detection, the threshold based on CFAR should be used. In this case
the probability of false Alarm has to be settled as lower as possible. As mentioned
above this kind of threshold depends strongly by the noise and guarantee the target
probability false alarm is very difficult due to the noise power fluctuations.
The conventional threshold derivation has one main problem that it only considers
one aspect at time, either respect to the Pd or Pf .

To avoid the problems related to a conventional fixed threshold sensing algo-
rithm, a lot of researchers studied a new approach consisting to adapt the threshold
with some measurements performed on the received signal. The adaptive thresh-
old sensing algorithm allows to adjust the energy threshold according to the SNR,
transmit power, sensing time.

For example in [6] an adaptive threshold is studied according the SNR. The
objective of this type of threshold is to maximize the detection of bands with no sig-
nal using a new optimized policy function. The detection threshold is dynamically
adapted using a linear increasing function of the SNR observed. Simulation results
show that this new threshold approach, respect the conventional fixed threshold de-
tector, achieves best performances and stability in terms of false alarm and missed

10

2.3 – Fast Fourier Transform review and architectures

detection probabilities.

The approach followed in [7] [8] for the adaptive threshold detector is to find
a trade-off between Pd and Pf defining a new error decision probability Pe and
minimizing it (Equation 2.15). In this analysis the author also took into account
the spectrum utilization of the transmitted signals with a parameter α.

minPe(λ) = min{(1− α)Pf + α(1− Pd)}; (2.15)

The final simplified expression (Equation 2.16) of the threshold, if the number
of samples is very high, depends only by σ2

w and the SNR.

λ∗ ≈ 2σ2
w · (1 + SNR)

2 + SNR
(N → +∞); (2.16)

In the [9] a similar method has been used but instead to minimize the error
decision probability, the intersection of two probability density functions (PDF) is
evaluated. According to the central limit theorem, the authors modelled the energy
of the received signal as a Gaussian random variable with different characteristics
based on the case reported on the binary hypothesis 2.1 of the Conventional Energy
Detector. Assuming PH0 = 1

3
and PH0 = 2

3
they searched the intersection of the

(PDF) under the two hypothesis. The final expression of the threshold, in this case,
depends only by the SNR and the number of samples taken into account.

In conclusion to have a good reference threshold, both threshold mechanisms
have to estimate the noise power. For the case of a fixed threshold, the noise power
is useful to know a base threshold level. Instead for the adaptive one, the noise
power estimation has to be performed at run time to compute the correct SNR and
so the threshold value.

2.3 Fast Fourier Transform review and architec-

tures

The aim of this section is to give a brief overview of the differences between some
FFT algorithms and architectures.

The Discrete Fourier Transform (DFT) is a discrete approach to perform a
Fourier Transform. The concept of the DFT is to transform a discrete signal in
the time-domain to the frequency domain. The DFT can be described as a sequence
of N complex numbers x0,x1,...,xN−1 transformed into another sequence of complex

11

2 – Theoretical background

numbers X0,X1,...,XN−1. The DFT is defined as following:

Xn =
N−1∑
k=0

xk · e−
2π·i·n·k

N (2.17)

The number of operations to perform DFT of a signal using direct DFT method
is proportional to N2. To reduce the number of operation for the Fourier Transform
in the discrete domain, Cooley and Tukey developed the Fast Fourier Transform
(FFT) method.
The DFT is a mathematical operation instead the FFT is a series of algorithms used
to implement DFT in practise on a digital machine. Performing a certain sequences
of operations (addition and multiplications), FFT eliminates redundancies exist-
ing in the DFT. The computational efficiency is achieved thanks to the additional
reordering steps to determine the final results and it is proportional to N · log(N).

2.3.1 FFT Algorithms

In literature exist a large number of FFT algorithms and their aim is to reduce the
complexity of the DFT. The most common FFT algorithms are:

• Cooley-Tukey algorithm uses the general principle of divide and conquer. It
breaks the DFT to smaller sub problems which can be achieved in the time or
in the frequency domain.

• Bruun’s FFT algorithm is based on recursive factorization of polynomials.
The idea is based on applying filters to derive the product of monomials.

• Bluestein’s FFT algorithm re-elaborates the DFT as a convolution.

Only the Cooley-Tukey’s will be touched more in detail because it has been used
in the implementation of the system.

Cooley-Tukey

The basic idea of this algorithm is to split the DFT into smaller sizes DFTs in order
to reduce the computational time. The DFT can be written as :

Xn = x0 + x1 ·W (1)n + · · ·+ xk ·W (k)n (2.18)

The expression 2.18 can be re-expressed in composites, the N terms can be split in
two composites odd and even parts. The twiddle factor (W (k)n) on the odd part is
taken outside the parenthesis in order to have the even expression:

12

2.3 – Fast Fourier Transform review and architectures

Xn = [x0 + x2 ·W (2)n + · · ·] +W (1) · [x1 + x3 ·W (2)n + · · ·] (2.19)

Expressing it with series:

Xn =

N−1
2∑

k=0

x2k ·W (2 · k) +W (1) ·
N−1

2∑
k=0

x2k+1 ·W (2 · k) (2.20)

The divide and conquer approach can be repeated for log(N) times and so the final
complexity of the algorithm is log(N) ·N .

The Cooley-Tukey algorithm can be performed with Decimation in Time (DIT)
and Decimation in Frequency (DIF). For both decimation types the total number
of computations remains the same. The main difference is on the order of the
output samples that in case of the DIF doesn’t follow the natural order but proper
permutations must happen to produce the bit-reversed ordered data.

Depending on the radix selected, radix-2 or radix-4, two basis elements exist: the
two-points Butterfly (Equation 2.21) and the four-points Butterfly(Equation 2.22).

X[1] = x[0] + x[1]

X[0] = x[0] +W [1] ∗ x[1]
(2.21)

+

+ -1 x

w

x[0]

x[1] X[1]

X[0]

Figure 2.6: Two points Butterfly

X[0] = x[0] + x[1] + x[2] + x[3]

X[1] = (x[0]− jx[1]− x[2] + jx[3])W 1

X[2] = (x[0]− x[1] + x[2]− x[3])W 2

X[3] = (x[0]− jx[1]− x[2] + jx[3])W 3

(2.22)

+

+

+

+

 -j

 1

 -j

 -1

 j

 1

1

 1

 -1

 j

 -1

 -1

x[0]

x[1]

x[2]

x[3]

x

x

x

x

X [0]

X [2]

X [1]

X [3]

w1

w2

w3

w4

Figure 2.7: Four points Butterfly

13

2 – Theoretical background

2.3.2 Implementation Architectures

Several architectures to implement the FFT algorithms exist. The type of the input
samples(timing and format) and the application type have to be considered to choose
the appropriate architecture. The first subdivision concerns the application and can
be distinguished into two different families:

• Pipelined Architectures

• Burst I/O Architectures

The Pipelined architecture is used when a continuous stream of input samples
has to be evaluated, so it allows a continuous data processing.
The Burst I/O architecture instead stores into a memory the samples and evaluates
the FFT on these separately. The main advantage of this architecture is the amount
of resources needed to be implemented but on the other hand the processing time
is longer.

The Pipelined architecture is implemented using several blocks in cascade mode.
Each block, called processing unit, includes one butterfly unit and a memory bank
used to store input data and intermediate values. This approach permits to send a
stream of continuous input data and after a latency time unload the result.

The Burst I/O architecture can be used when the available resources could be a
constraint. It uses only one butterfly unit, radix-2 or radix-4, which computes the
FFT algorithm with an iterative approach. When all the input samples are loaded,
the input streaming has to be halted until the transform evaluation is finished. Then
the FFT result can be unloaded.

A particular attention on the data format has to be considered. The samples can
be expressed with fixed-point or floating-point representation. The floating point
representation leads more computational resources than the fixed-point one and the
case of a full floating point architecture could be very expensive, moreover the cases
of NaN, ± infinity and Denormalized numbers have to be considered.
Always related to the data format, the fixed word length implies to use scaling
factors or other methods. For example in case of a radix-4 butterfly stage, in a DIT
FFT algorithm, the result length can grow by a factor up to 3 bits. In the case of
a radix-2 butterfly stage the increasing factor is up to 2 bits. To handle this length
growth several solutions can be used:

• Performing the transform using a no-scaling approach keeping all significant
integer bits;

14

2.3 – Fast Fourier Transform review and architectures

• Scaling each FFT transform stages using a pre-fixed scaling schedule approach;

• Exploiting the automatic scaling of the floating point representation.

A pre-fixed scaling schedule approach scales by a power of two each stage of the
algorithm. The scaling factor exponent has to be considered such that no overflows
appear in the Fourier transform. The scaling operation leads to use also a rounding
operation. Several rounding approaches exist in literature but the ones with a zero
bias value are preferred: for example the rounding to the nearest even.

15

16

Chapter 3

Software Defined Radio: USRP

3.1 Introduction

In the first part of this chapter will be touched what is Software Define Radio, which
are the main advantages and the typical applications.
Instead the second part describes about the SDR device used for the purpose of this
thesis, the USRP-N210 device designed by Ettus Research. To develop the spectrum
scanning system a first study of the device has been done to know which approach
to use and which resources are available on the USRP.

3.2 Software define radio

Different definitions can be found to describe Software Defined Radio, also known
as SDR. The SDR Forum working in collaboration with the Institute of Electrical
and Electronic Engineers (IEEE) established a definition of SDR simply as:

”Radio in which some or all of the physical layer functions are software defined”

Traditional hardware based radio devices limit cross-functionality and can only
be modified through physical intervention. By contrast, SDR technology provides an
efficient and comparatively inexpensive solution, allowing multi-mode, multi-band
and/or multi-functional wireless devices that can be enhanced using software up-
grades.

SDR includes a set of hardware and software technologies where some or all
the radio functions can be modified by software or firmware operating inside the

17

3 – Software Defined Radio: USRP

programmable part of the system. These devices include digital signal proces-
sors (DSP), field programmable gate arrays (FPGA), programmable System on
Chip(SoC) or other programmable processors for specific applications.

A simple structure of a SDR receiver is shown in the Figure 3.1.

O

X A/D

PROCESSING:

FPGA
DSPS
ASICS

RF IF (digital channel)

Figure 3.1: Simple structure of an SDR receiver

The Figure 3.1 shows how the receiving chain can be structured. The RF signal,
coming from the antenna, is filtered by a wide band filter and then amplified with
a LNA (Low Noise Amplifier). This amplifier usually is followed by an additional
Programmable Gain Amplifier (PGA), which amplifies the received signal with a
gain settled by software.
The amplified signal is shifted from the RF to IF band multiplying it by a local
oscillator. The hardware used for this purpose is called mixer. The local oscillator
signals usually are synthesised by a Phase Lock Loop(PLL) paired with a Voltage
Control Oscillator(VCO). In this way the user has the availability to change the
local oscillator frequency by software.
The analog to digital converter(ADC) converts the IF signal to a digital value, that
can be filtered again and processed using some specific hardware.
Usually the RF signal is brought to baseband through the local oscillator and so
it can be sampled by lower frequency, but there are also some specific applications
where the amplified signal can be sampled directly by the AD without any tune
stage. A lot of different architectures exist but the common type brings the signal
into baseband frequency and splits it in: the Quadrature and In-phase components.
A similar architecture can be derived from the transmitting chain where the AD
converter is changed with a DA converter and the signal flows toward the antenna.

The flexibility of SDR lies in a programmable baseband, IF or RF section. Be-
cause the system can operate at multiple frequency bands, a set of dedicated RFs
or tunable wideband RF are used (wide band filter, LNA, mixer).

3.3 USRP - Universal Software Radio Peripheral

In the previous section 3.2, the definition of SDR, its advantages, and the increasing
usage of it have been described. For the project purpose, the USRP-N210 device
has been used.

18

3.3 – USRP - Universal Software Radio Peripheral

The acronym USRP stands for Universal Software Radio Peripheral, this product
was designed by Matt Ettus for RF applications from DC up to 6GHz, including
the availability of multiple antenna system (MIMO). The platform is very flexible
and can be used to implement real time applications. Most USRPs are connected
to a host computer through a high-speed link, for example ethernet communication.
The software-based host controls the USRP hardware to receive and transmit data
using an open source UHD driver. Moreover, also other types of USRP exist where
the host system functionalities are integrated in an embedded processor that allows
the device to work in a stand-alone fashion.
One of the main advantages of this platform and the USRP family is the design for
accessibility due to the use of an open source hardware. The following sub-sections
have the aim to explain how the device work, how is structured and how can be
used.

3.3.1 Hardware

The USRP’s motherboard provides the following subsystems:

• Base band processing :

– clock generation and synchronization;

– FPGA;

– ADCs;

– DACs;

– host processor interface;

– power regulation.

• RF analog processing :

– up/down conversion;

– filtering;

– other signal conditioning.

The RF analog processing is a modular front-end called daughter board which can
be changed based-on the application. This modularity permits, as mentioned in the
introduction, to handle application from DC to 6GHz.
The Figure 3.2 shows how the different parts listed before are connected.

The USRP N210 specification are reported in the Table 3.1.

19

3 – Software Defined Radio: USRP

FPGA Xilinx Spartan 3A-DSP3400
ADC 14-bits 100 Ms/s
DAC 16-bits 400 Ms/s

Connectivity Gigabit Ethernet Interface
Optional GPSDO module

Fully Coherent MIMO capability

Table 3.1: USRP N210 device specification

Ethernet PHY
Gigabit

Ethernet

MIMO
expansion

SMA 1PPS

SMA Ext Ref

SMA GPS

Reference and
System Clock

Generation

Int GPSDO
Reference

UHD
Network Driver

Command & Control
Data Streaming

Decim

Interp
CIC

DDC

DUC

32 bit RISC
processor

TCXO

Dual 100
MSPS
ADC

Dual 400
MSPS
DAC

S
tandardizied D

aughter B
oard Interface

D
aughter B

oard

 GPIO, SPI

 TX, RX Clk

ADC/DAC Clk

FPGA - Xilinx Spartan 3A-DSP

Figure 3.2: USRP N210 Block diagram from [1]

Analysing the receiver chain, the USRP down-converts the RF signal to base
band, this is sent to the Host over a high-speed Ethernet link. While in the trans-
mitting chain the USRP up-convert baseband samples, from the host system, to RF
signal to be transmitted.

Several RF analog parameter inside the daughterboard are controlled by the
software: local oscillator frequency, gain of the PGA and cut-off frequency of low
pass filter.

Thanks to the open source issue of the device, the internal FPGA could be re-
programmed using the Xilinx ISE Design Suite. This allows in different applications
to reduce the intensive workload of the host system.

20

3.3 – USRP - Universal Software Radio Peripheral

3.3.2 Data Flow in USRP system

Figure 3.3 shows how the data received by the antenna is processed until to the host
program. A similar analysis can be done for the transmitting sequence.

FRONT-END ADC FPGA
ETHERNET

PORT
HOST

SYSTEM

USRP N210

Daughter Board Main Board
Antenna

Figure 3.3: Data flow USRP host

Starting from the beginning of the chain each block will be discussed.

RF Front-end

The RF Front-end, in many cases, includes: the mixers, filters, oscillators and am-
plifiers lead to translate a signal from the RF domain to the complex baseband or IF
signals. Based on the daughterboard type the translated signal can be complex or
real. For example, the WBX daughterboard translates the RF signal to a complex
extracting the quadrature and in-phase components. Instead the Basic RX shifts
only the frequency components and treats the signal as a real one imposing the
imaginary part equal to 0. Thanks to the flexibility feature of USRP, several pa-
rameters such as: RF central frequency, gain of the PGA can be changed by software
intervention.

ADC

The baseband signals are then sampled by ADCs, one ADC for each component
(I/Q). The ADC as mentioned in the Table 3.1 performs 100 MSps with the resolu-
tion of 14 bits. The digital samples are clocked into the FPGA.

21

3 – Software Defined Radio: USRP

FPGA DDC chain

The USRP N210 includes the Xilinx FPGA Spartan 3A-DSP3400, configured as a
System on Chip (SOC) where different Intellectual Property (IP) cores of the Eth-
ernet MAC, UART, I2C, Interrupt controller, SPI ecc. (Figure 3.5) are connected
by the Wishbone bus. On this bus, a 32-bit soft-core processor ZPU acts as master
while the other IP blocks are slaves.

The deafault stock FPGA image provides digital-down conversion and other func-
tionality, such as a fine-frequency tuning and several filters for decimation (Figure
3.4).

CORDIC CIC
Half-band

filter
Packet
Router Ethernet port

FPGA

Digital Down Converter

From ADC To host

DSP RX Core

Figure 3.4: FPGA functionalities

The CORDIC unit as showed in Figure 3.4 is used for the fine frequency tuning.
It should be thought as a DCO and Quadrature Mixer combined. The daughter
board usually has a nominal useful bandwidth. The two half band FIR plus the CIC
(Cascade Integrator Comb Filter) filter create a low pass filter with programmable
decimation (Centred on DC). The CORDIC unit allows the nominal bandwidth to
be arbitrarily repositioned with respect the DC of the downstream low-pass filter.
So, in combination with the programmed decimation can be selected a narrower
channel, that means a high precision tuning.
The Packet Router unit is composed by the VITA Radio Transport core that packs
the samples decimated.

The packets are then sent to the Ethernet MAC to be transported to the host
system.

3.3.3 FPGA resources

Compiling with Xilinx ISE suite the open source firmware the resources available
inside the FPGA are found. The Table 3.2 shows percentage of resource usage.

22

3.3 – USRP - Universal Software Radio Peripheral

ADC ADC DAC

DSP CORE
RX0

DSP CORE
RX1

VITA RX
CHAIN0

VITA RX
CHAIN1

VITA TX
CHAIN

EXT FIFO

ZPU
(Master)

Boot RAM
Buffer Pool

packet router
Ethernet

MAC
I2C GPIO

Buffer Pool
Status

SPI

Settings Bus
Interrupt

Controller
UART ATR ICAP SPI Flash Main RAM

SERDES

Wishbone
interconnect

u2plus_core

Figure 3.5: SOC in FPGA’s USRP [2]

Design Summary Report

Number of slice FFs 20,302 out of 47,744 42%

Number of 4 input LUTs 31,344 out of 47,744 42%

Number of BUFGMUXs 6 out of 24 25%

Number of DCMs 1 out of 8 12%

Number of DSP48As 31 out of 126 24%

Number of ICAPs 1 out of 1 100%

Number of RAMB16BWERs 41 out of 126 32%

Number of Slices 19682 out of 23872 82%

Number of SLICEMs 2360 out of 11936 19%

Table 3.2: FPGA resources available

FPGA custom part

The source code of the FPGA in the USRP is an open source code, in particular Ettus
Research allows to modify it in predefined points simply adding a signal processing
module in cascade mode. There are different points where the custom modules can
be added(Figure 3.6):

• between the RF front-end and DDC (1);

• between the DDC and baseband processing (3);

23

3 – Software Defined Radio: USRP

RX FRONT-END DDC CHAIN
BASEBAND

PROCESSING

front_end_i

front_end_q

ddc_in_i

ddc_in_q

ddc_out_enable

ddc_out_strobe

ddc_out_sample

bb_in_strobe

bb_in_samples

1

2

3

Figure 3.6: FPGA custom points

• replacing the DDC unit(2).

Using the Xilinx ISE 12.2 suite the modified source code can be synthesized and
flashed into the FPGA.

3.3.4 Host Software

The host based software communicates with the USRP through a library called
UHD(Universal Hardware Library). The C++ library provides the ability to control
the device, abstracting away the underlying communication protocol. The host
sends control messages, provides sources and sinks with transparent type conversion
mechanism. The USRP device is completely compatible with: LabVIEW and Gnu
Radio (a free and open-source Toolkit for Software Radio).
The UHD driver documentation for the classes and functions is almost complete
on official web-site [11]. However a community based on mailing list exists where
people can ask questions and the answers are available for all the users.

3.3.5 Practical Aspects

A lot of USRP based applications use a fully software approach to implement the
signal processing algorithm. Users like to use the Gnu Radio tool, to implement
software applications, for the user-friendly interface and for the easiness to process
base-band signals. The software applications created are executed by the host CPU
on a conventional operating system.
One major bottleneck of USRP is the limited CPU computation power, which does
not allow to process RF signals at high sample rates continuously. The CPU work-
load of the host computer rapidly becomes intolerable when it processes a continuous
sample stream.
Secondly the streaming performance depend also on the interface between USRP

24

3.3 – USRP - Universal Software Radio Peripheral

and host computer. The USRP N210 should reach a maximum theoretical through-
put of 25MS/s with a 16 bit I/Q format through a Gigabit Ethernet link. It is
needed to underline that the actual throughput value depends on several factors:
the processing capability of the host computer, the complexity of the application
and other factors, so becomes hard to guarantee the theoretical value.
The typical idea followed to cope the limited CPU computation power is to embed
part of the algorithm inside the customable FPGA side. Thanks to this approach
the host CPU workload can be relived.

Some applications need to send several commands with a precise execution time,
such as a spectrum scanner where the RF central frequency, of the daughterboard,
needs to be re-tuned with specific period of time. When this time is very short,
like 1ms, it is difficult to guarantee that the host CPU will be able to send these
commands every millisecond, especially when running software on conventional op-
erating system. In contrast to a real-time system, when the software is executed by
a conventional OS, it can suffer from OS related lags.
To solve this limitation, Ettus Research has introduced the concept of time com-
mands. This allows to pair the command with a specific execution time. The
advantage lies on the timing precision which is linked to the FPGA clock. More-
over, the USRP can handle up to 16 timed commands in advance and execute them
in the future.

25

26

Chapter 4

Automatic Spectrum Scanning
System

4.1 Introduction

The Chapter 4 has the aim to explain how the system is structured, and how works
at high level. Two types of architectures have been implemented: a fixed and an
adaptive threshold architecture. The system, in both of the cases, analyses the
spectrum around a certain central frequency, fc, to understand if there are signals
in that frequency range. Changing the fc of the receiver other frequencies can be
analysed.

4.2 System Design

The Figure 4.1 shows the high level architecture of the Automatic Spectrum System.
The system is composed by several parts: the spectrum scanning and the signal
detection are performed inside the USRP FPGA; while the scanning coordination
and the data logging are performed by the Host CPU.

The front-end part of the USRP samples data with sample rate frequency (fs)
at a certain central frequency fc and using an appropriate ADC converts the analog
signal into a digital one. The sampling operation, as explained in the Section 3.3,
is performed into the base band thanks to a first stage composed by a mixer. The
digital data is processed by the synthesized units, flashed into the FPGA. The
processed samples are sent to the host CPU by an Ethernet communication, which
handles the results storing them into a database.

27

4 – Automatic Spectrum Scanning System

USRP N210

R
F

 fr
on

t-
en

d

A
D

C

FFT |Y| 2 < λ

λ

FPGA

M fs λ

REGıSTERS

 fc fs {M,fs,λ}

 {Detection,|Y|2}

Figure 4.1: High level Architecture of Spectrum Scanning System

4.2.1 FPGA

By exploiting the features of the USRP device, explained in the section 3.3, a custom
module, that includes several processing units, has been embedded into the original
FPGA configuration.
As the Figure 4.1 shows, the FPGA architecture is composed by 3 main blocks.
The FFT of the digital received signal is performed. The FFT size is kept constant to
1024 so the frequency bin resolution is controlled by changing the USRP sample rate.
Then Square Magnitude (SQM) of the complex FFT result is evaluated. Finally
the comparison with the threshold (λ) is performed into the energy detection unit.
The comparison with λ is evaluated over a sub-band of frequency bins (indicated by
the register M), which can be configured from 1 to 1024 with values power of 2.
For the Automatic Threshold architecture some additional units are used to evaluate
λ based on the overall SNR.
The signal, that is sent to the software, is defined over 32 bits; the first 31 bits
represent the SQM (normalized in case of the adaptive architecture) of the FFT,
and the last bit represents the detection for each frequency bin specifying if a signal
is detected or not for the respective frequency bin.
Working inside the FPGA, all the operations are performed at frequency clock speed
(100MHz), this allows the Host CPU to run a lighter program and so avoid lags
that occur with conventional operating systems. The Chapter 5 explains in details
each module implemented for both the architectures.

28

4.3 – Spectrum Sensing Algorithm

4.2.2 Software

The Host CPU controls and coordinates the fc retuning and all commands to receive
the samples from the USRP. The received data is reordered and logged into a file.
The main task is to retune the fc for covering a wide bandwidth of the spectrum.
Each FFT can analyse a bandwidth equal to the sample rate frequency and so retun-
ing the fc of the USRP receiver, a wideband of the spectrum can be analysed. The
fc retuning operation, in the automatic mode, takes about 500µs; so each retuning
can be done approximately every 1ms to have more margin.
Moreover the Host CPU sends also commands to settle some user registers, the
sample rate and the receive samples command.
The user registers that have to be settled are: the number of bins in the sub
bands(M), the fs value for re-adapt the samples to the sample rate and the level
of the threshold λ. In the adaptive threshold architecture some more additional
registers are used to remove the DC component caused by the RF front-end part.
More control commands are sent consequently exploiting the time commands fea-
ture of the UHD driver. Thanks to an input FIFO inside the USRP, the Host CPU
can send up to 16 commands in advance with a precise future executing time. This
allows to deal with inevitable software lags that occur on the Host CPU when using
conventional operating systems.
The Chapter 6 explains in details the software implementation.

4.3 Spectrum Sensing Algorithm

The spectrum sensing algorithm implemented in the Automatic Spectrum Scanning
System is based on the Energy Detection algorithm described in the Section 2.1.1.
This sensing technique permits to detect signals without any priori info of the signal
received and with low computational cost.
The idea is to perform the Fourier transform of 1024 samples and divide the fre-
quency components into l sub-bands composed by M bins. The energy of each
sub-band is compared with a threshold λ.
A deep study on the selection of the λ value has been conducted. As mentioned in
the Section 2.2 many studies have been performed by researchers about the thresh-
old selection, and in case of an adaptive threshold approach a measure of the SNR
is necessary.
Several algorithms have been simulated in Matlab to find the best method for the
system purpose. The SNR evaluation for example can be performed directly on
the FFT result using an image processing approach based on Rank Order Filters
(ROF)[12].

29

4 – Automatic Spectrum Scanning System

Using the Matlab simulation with floating point format, the algorithm detects pre-
cisely the signals estimating with good precision the SNR using the ROF method.
Moreover the ROF has a good structure to be implemented in hardware. After
the FFT module has been implemented and simulated, some more aspects on the
threshold selection has to be considered. The FFT hardware module used, it has a
resolution that does not permit measure the noise power directly on the FFT result.
This fact is due to the fixed point data format and the scaled approach to avoid
overflow on the FFT algorithm. So another way has been followed and it is to use
a threshold based on the CFAR that needs only the noise power evaluated in the
time domain directly on the Host CPU.

4.3.1 Fixed Threshold

The Fixed Threshold architecture evaluates the energy adding the SQM bin values
on the sub-band selected, then the result is compared with the threshold adapted to
the frequency domain. Following the sensing algorithm is shown as a pseudo Matlab
code.

Y=f f t (samples t domain , N) ;
SQM = abs (Y) . ˆ 2 ;
th r e sho ld = t h r e s h o l d e v a l u a t i o n (noise power ,N,M) ;
for (k=0 : 1 : m window)

s igna l energy window = sum(SQM([k∗M+1 : k∗M+M])) ;
i f (th r e sho ld < s igna l energy window)

DETECTION=true ;
else

DETECTION=f a l s e ;
end i f

end for

The threshold selected as mentioned before is based on the constant false alarm
probability (Equation 2.14). Because the expression is given on the time domain,
recalling the Parseval’s theorem 1 the version on the frequency domain is found
simply multiplying it by the size of the FFT (N = 1024).
The expression to derive λ becomes the following

λ∗ = (σ2
w(1 +

Q−1(Pf)√
N/2

) · M
N

) ·N) + ε (4.1)

1The Parseval’s Theorem is often used to describe the unitarity of any Fourier transform,
especially in physics. For the discrete Fourier transfor (DFT) the relation is:

∑N−1
n=0 |x[n]|2 =

1
N

∑N−1
k=0 |X[k]|2 where X[k] is the DFT of x[n], both of length N [13].

30

4.3 – Spectrum Sensing Algorithm

Where σs is the noise power, Pf the probability of false alarm, M number of
sub-band bins and N size of the FFT. The ε value is a correction factor due to the
operations in fixed point format and the value is fixed to 10.

4.3.2 Adaptive Threshold

The idea of the Adaptive Threshold is to adapt a base threshold value with the
mean energy of the samples received as explained in [14]. The normalized square
magnitude of the spectrum, D factor, is evaluated dividing the SQM by the mean
value of all FFT bins. Similar to the fixed one, then for each sub-band the sum
of the bins is evaluated (Dwindow) and compared with the threshold. Before the
comparison, λ value is adapted adding a portion (α) of the Dwindow.

The expression of the D factor is the following (Equation 4.2):

D[k] =
|X[k]|2∑N−1

n=0 |X[n]|2/N
(4.2)

For the case of one sub-band of M bins the expression becomes:

Dwindow =

∑nw+M−1
k=nw

|X[k]|2∑N−1
n=0 |X[n]|2/N

(4.3)

where nw stands for the starting bin of the sub-band.

The final threshold compared with Dwindow is defined as the sum of the CFAR
threshold, used for the fixed case (Equation 4.1), and a percentage of Dwindow (Equa-
tion 4.3):

λ = λ∗ + α ·Dwindow (4.4)

Following a pseudo Matlab code of the adaptive algorithm explained before is
shown.

31

4 – Automatic Spectrum Scanning System

Y=f f t (samples t domain , N) ;
SQM = abs (Y) . ˆ 2 ;
D = SQM . / mean(SQM) ;
th b = t h r e s h o l d e v a l u a t i o n (noise power ,N,M) ;
for (k=0 : 1 : m window)

D window = sum(D[k∗M+1 : k∗M+M]) ;
th = th b+ alpha ∗ D window ;
i f (th < D window)

DETECTION=true ;
else

DETECTION=f a l s e ;
end i f

end for

As can be noticed, the adaptive algorithm recalls some division operations. To
avoid the implementation and the usage of some division modules on the FPGA,
the algorithm is simplified to use only divisions by power of 2.
The threshold value, in both cases, has to be stored inside a user register of the
FPGA. Since the data representation is always with fixed point format, the threshold
value is converted on 32 bit fixed point data format and rounded to the nearest upper
power of 2. In the conversion operation also the scale factor applied on the FFT
stages to avoid overflows has to be considered, as explained in section 2.3.
The threshold expression based on CFAR (λ∗) becomes (Equation 4.5) :

λ = λ∗ · s → s = 2(nbit−1−scale) (4.5)

The result of λ can be stored directly to the user register dedicated for the
threshold.

32

Chapter 5

Hardware implementation of
Energy Detection

5.1 Introduction

The FPGA modules implemented to develop the algorithms explained previously
(Chapter 4) are described in the following chapter. All the units have been de-
scribed in Verilog and synthesized with the Xilinx ISE 12.2 suite. The approach
followed is to create several modules with different scopes which can be put in cas-
cade mode. In this way if some other units are needed, can be added simply inside
the chain.
The Figure 5.1 shows the top view of the modules implemented. Each module has
two input and output signals, one for the data and one that indicates if the data is
valid.

FFT |Y|2
ENERGY

DETECTıON
MODULE

x[31:0] {I,Q} X[31:0] {I,Q} SQM[31:0] Y[31:0] { D,|Y|2 [30:0] }

strobe dv_fft dv_sqm dv_Y

DATA
SYNCHRONıZER

Y[31:0] { D,|Y|2 [30:0] }

strobe

Figure 5.1: Top view of FPGA custom module

The FPGA architecture is divided in four main modules:

• FFT unit;

• SQM (Square Magnitude) unit;

• Energy Detection unit;

33

5 – Hardware implementation of Energy Detection

• Data Synchronizer unit;

To implement the two different algorithms, fixed and adaptive threshold, only
the Energy Detection module in the chain changes; two different modules has been
developed.
The chapter is organized with one section to describe each module shown in the
Figure 5.1. First the units shared between the two architectures, FFT and SQM,
will be explained. Then two different sections will describe the detection unit. The
last section is dedicated to the Data Synchronizer unit which re-adapts the samples
to the sample rate.

5.2 Fast Fourier Transform Module

The first module that is described is the Fast Fourier Transform Module. After a
study of different architectures and algorithms to evaluate the FFT (Section 2.3),
the module has been implemented.
The data coming from the USRP RF-frontend have fixed point format on 16 bit:

• 16 bit for the quadrature component in time domain (xq);

• 16 bit for the in-phase component in time domain (xi).

The FFT size (N) selected is 1024 and is fixed to this value; to refine the frequency
resolution the fs can be changed.
The suite used to synthesise the source modules is Xilinx ISE 12.2 as suggested by
the USRP manual. This tool provides IP cores for different applications. One IP
core available is LogiCORE IP Fast Fourier Transform v7.1 [15].
This IP core provides four different FFT architectures:

• Pipelined, Streaming I\O;

• Radix-4, Burst I\O;

• Radix-2, Burst I\O;

• Radix-2 Lite, Burst I\O.

Each architecture provides two different data format: floating point and fixed point
representation. Moreover there is the possibility for all the architectures to use a
convergent rounding to the data after the butterfly stage.
For the fixed point representation is present an input dedicated for the scale factor
to be applied at each stage. The scale factor can be applied from the input port
SCALE SCH which has a pair of bits for each stage of the algorithm as following

34

5.2 – Fast Fourier Transform Module

[... N3 N2 N1 N0]. For the Radix-2 approach there are log2N stages, so for 1024
points are defined 10 stages and the bus length is of 20 bits. The suggested value,
looking at the chapter dedicated to the scaling schedule in [15], to avoid overflow is
[01 01 01 01 01 01 01 01 01 10].
To be sure that the scaling schedule is appropriate, Xilinx provides a C model of the
IP core to simulate it and look if some overflows occur. The scale factor mentioned
before has been simulated with the C model and it does not give any overflows.

Two details have been taken into account among the different architectures: the
resource usage and the processing time. The Pipelined architecture is the fastest one
but comparing the resources available for the FPGA custom part with the requested
by the core, result that are not enough. For the resource constraint, the Radix-2
Burst I\O architecture has been chosen. The Table 5.1 shows the performances and
resources usage for the Spartan-3A DSP family of the architecture selected.

Slices 909

LUTs 1397

FFs 1273

18k Block RAMs 3

XtremeDSP slices 3

Max clock frequency [MHz] 203

Latency Clock Cycles 7385

Table 5.1: LogiCORE IP FFT v7.1, Radix-2 Burst I\O, performances and
resources

The Figure 5.2 shows the top view of the FFT unit. The module has been
implemented using an hierarchical approach. The top level includes several units
which are:

• two RAMs to store the samples in the time domain;

• one FFT IP core;

• one Control Unit to handle the timing of the signals.

The module is characterized by a pair of input and output ports: the data bus,
for both ports, is paired with a signal that indicates if the value is available or not.

35

5 – Hardware implementation of Energy Detection

RAM 0

din [31:0]

wea

addra

sclr

clk

douta[31:0]

s

0

1

xk[31:0]

FFT IP CORE

xn [31:0]

scale_sch_we

start

sclr

clk

RAM 1

din [31:0]

wea

addra

sclr

clk

douta[31:0]

CONTROL UNIT FFT

e_done_fft_core

strobe

sclr

clk

unload_fft_core

dv_fft_core

start_fft_core

scale_sch_we_fft_core

sclr_fft_core

wr_en_ram_0

addr_ram_0[9:0]

sel_ram

wr_en_ram_1

addr_ram_1[9:0]

unload

dv_fft_core

e_done_fft_core

xk [31:0]

dv_fft

xn[31:0]

strobe

clock

sclr

FFT UNıT

Figure 5.2: Top view of FFT module

Samples coming from the RF front-end has the behaviour as shown in the Figure
5.3. Every time when there is a new sample, the strobe signal changes from the
binary value ”0” to ”1” for one clock cycle. The frequency of the strobe signal is
equal to the sample rate (fs).

clock

x_i x_i[0] x_i[1]

x_q x_q[0] x_q[1]

strobe

Figure 5.3: Timing diagram of time domain samples

For the N value, 1024 samples are needed to start the FFT IP core. Because
the architecture selected is BURST I\O, two RAMs, of size 1024x32 bits, are used
as buffer for samples. When one RAM is in write mode the other RAM is in read
mode such that no sample will be lost. The idea is to write 1024 samples in one
RAM and at the same time read the same amount of samples from the other RAM

36

5.2 – Fast Fourier Transform Module

sending them to the FFT IP core. When all the samples are read, the IP core can
be run with the start signal.
Also the RAM verilog unit has been created through the CORE Generator Graphical
User Interface from Xilinx ISE suite. The Control Unit FFT (Figure 5.4) generates
timed signals to control: the read and write operations of RAMs and the FFT IP
core. It is divided into two finite state machines (FSMs), which exchange signals
among them:

• WR RAM Controller;

• FFT Controller;

s
10

clock

CONTROL UNıT FFT

RAM WR CONTROLLER

strobe

sclr

clk

ready

FFT CONTROLLER

clk

s
1 0

wr_en_ram_0

addr [9:0] addr [9:0]

sclr

e_done_fft_core

dv_fft_core

ready

sel_ram

wr_en_ram_1

d q

clk

TFF

reset

sclr_fft_core

scale_sch_we_fft_core

start_fft_core

unload_fft_core

sclr

strobe

 [9:0]

 [9:0]

e_done_fft_core

dv_fft_core

sclr_fft_core

scale_sch_we_fft_core

start_fft_core

unload_fft_core

wr_en_ram_0

wr_en_ram_1

addr_ram_0

addr_ram_1

Figure 5.4: Control Unit FFT module

The WR RAM controller selects which RAM has to be written and generates a
signal called ready used to inform the FFT Controller that samples are available to
be transformed. Moreover this signal is an input of a T Flip Flop, the output of
this FF selects the address for the respective RAM. When the binary value is ”0”:
the RAM0 address comes from the RAM Controller and the the RAM1 address

37

5 – Hardware implementation of Energy Detection

comes from the FFT controller. In case the binary value is ”1” the situation is
complementary. An example of the switching mechanism is shown in the Figure 5.5.

clock

address_ram_0 a b c n o p g

address_ram_1 i l m d e f q

address_ftt_controller a b c d e f g

address_wr_ram_controller i l m n o p q

ready

sel_ram

Figure 5.5: FFT Controller

5.2.1 WR RAM Controller

The WR RAM Controller is characterized by two inputs (strobe and sel ram) and
three outputs (ready, wr ram 0 and wr ram 1). As can be noticed in the Figure 5.6
this unit is divided in two sub-units one that defines the FSM and the other the
FSM’s datapath.

The FSM’s datapath is composed by a simple binary counter modulo 10 (Figure
5.7). This unit is enabled by the FSM when the strobe signal becomes high, and it
counts the incoming samples. A terminal count, implemented with a simple AND
gate, settled to 1023 is used to signal the switch to another RAM. When the out-
put of the counter presents all ones then the terminal count transits from the binary
value ”0” to ”1”. Moreover the count value represents the address to point the mem-
ory. The binary counter is implemented with an IP Core available in the Xilinx suite.

The Control Unit instead represents the FSM description. A FSM with six
states has been created: RESET STATE, WR RAM 0, WR RAM 1, COUNT EN,
RAM FULL, WAIT N SAMPLE. The Figure 5.8 shows the ASM chart of the state
machine.
The reset signal has the higher priority respect all other signal. When is asserted
the FSM changes is state, whatever it is, into the RESET state.
At the beginning the FSM remains in the RESET state waiting the signal strobe
that transits from binary value ”0” to ”1”. When a sample is available a test on the
select ram signal is performed. If it is ”0” the left branch is selected otherwise the
right one is followed. Based on the previous test, the next state will be WR RAM 0

38

5.2 – Fast Fourier Transform Module

clock

RAM WR CONTROLLERControl Unit RAM WR
Controller

clock

reset

strobe

sel_ram

wr_en_ram_0

wr_en_ram_1

ready

reset

strobe wr_rn_ram_1

wr_en_ram_0

ready

en_cnt

tc_cnt

en_cnt

sclr_cnt sclr_cnt addr[9:0]

tc_cnt

addr

sel_ram

DP RAM WR Controller

clock

Figure 5.6: WR RAM Controller

COUNTER
mod 10

ce

sclr

clk

q[9:0]
sclr_cnt

en_cnt

clock

DATAPATH RAM WR
CONTROLLER

[9:0]

tc_cnt

addr

Figure 5.7: Datapath WR RAM Controller

or WR RAM 1, in both of the cases the write control signal, of the RAM selected,
is enabled.
When one sample is written, the binary counter is enabled for one clock cycle such
that is incremented. If N samples have been counted, the TC is active high and
so the ready command is settled to binary value ”1” for one clock cycle. Instead if
other samples have to be written the FSM remains in the WAIT N SAMPLES state
waiting the next strobe signal. As mentioned previously, in the Control Unit FFT
Module, the ready signal is used to inform the second FSM that data are available
to be processed and at the same time through the T flip flop the selection of the

39

5 – Hardware implementation of Energy Detection

RAM is changed automatically.

wait for a new sample and
disable write command for

each RAM

WAIT_N_SAMPLE

cnt ++

COUNT_EN_0

enable write to RAM 0
write_addr = cnt

WR_RAM_0

reset counter -> cnt = 0
disable write ram

RESET_STATE

send the start command to
fft_core

RAM_FULL

enable write to RAM 1
write_addr = cnt

WR_RAM_1

new sample
?

RAM 1
?

cnt = 1023
?

new_sample

yes

no

yesno

yes

no

yes

no

reset

Figure 5.8: Control Unit WR RAM Controller ASM chart

40

5.2 – Fast Fourier Transform Module

ready = '0'

WAIT_N_SAMPLE

en_cnt = '1'

COUNT_EN

wr_en_ram_0 = '1'

WR_RAM_0

sclr_cnt = '1'
en_cnt = '0'

wr_en_ram_0 ='0'
wr_en_ram_1 = '0'

ready = '0'

RESET_STATE

ready = '1'

RAM_FULL

wr_en_ram_1 = '1'

WR_RAM_1

new sample
?

RAM 1
?

cnt = 1023
?

new_sample

yes

no

yesno

yes

no

yes

no

reset

Figure 5.9: Control Unit WR RAM Controller Control ASM chart

5.2.2 FFT Controller

To generate the signals to control the FFT IP core a second FSM has been imple-
mented. As the WR RAM Controller, the FFT Controller is divided in two blocks:
the Control Unit and the datapath (Figure 5.10). The datapath of this FSM in-
cludes one counter as in the WR RAM Controller, the datapath figure is omitted
because the similarity of Figure 5.8 . The aim of this unit is to count the samples
and generate the address to point at each row of the RAM.

After a detailed analysis of the FFT IP core datasheet, a knowledge of the order
and the timing of signals has been understood. The following signals have to be
generated: sclr fft core, scale sch we fft core, start fft core, unload fft core, en cnt

41

5 – Hardware implementation of Energy Detection

clock

FFT CONTROLLER
Control Unit FFT Controller

clk

sclr

e_done_fft_core

dv_fft_core

ready

sclr_fft_core

scale_sch_we_fft_core

start_fft_core

unload_fft_core
sclr

e_done_fft_core

dv_fft_core sclr_fft_core

scale_sch_we_fft_core

start_fft_core

unload_fft_core

en_cnt

tc_cnt

en_cnt

sclr_cnt sclr_cnt addr[9:0]

tc_cnt

addr

ready

clk

DP FFT Controller

Figure 5.10: FFT Controller

and sclr cnt. The input signals which have to be sensed are: ready,TC, dv fft core,
e done fft core.
To describe the FSM eight states has been used: RESET STATE, SET SCALING,
START FFT, LOAD FFT, WAITING PROCESSING, UNLOAD EN, WAITING DV,
UNLOAD.
The Figure 5.11 shows the ASM chart of the FFT controller state machine, each
steps, between states based on the inputs values, are described.
As on the previous FSM the RESET STATE is the default state with the highest
priority.
After the reset state the scale factor has been stored in the dedicated register in the
IP Core through the scale sch we fft core control signal. Then the state machine
remains in this state until the ready signal becomes the binary value ”1”.
When the ready signal is activated by the WR RAM Controller, the module knows
that samples are available to be transformed. So the state changes to the START FFT
one.
The start fft core and en cnt signals are enabled, from that moment 1024 samples
one each clock cycles are sent to the IP core. The counter counts until 1023 starting
from 0 and the output value represents the address to point at the RAM selected.
The FFT starts to transform the samples when all N samples have been sent to the
core. From the starting time, a latency time has to be waited before the IP core
output data is available. Through the value of e done fft core, the end of the FFT

42

5.2 – Fast Fourier Transform Module

algorithm can be sensed one clock cycle before. As reported in Table 5.1 the latency
clock cycles is of 7385.
When the e done fft core signal is asserted, the new state becomes UNLOAD where
the unload fft core signal is generated. After a latency time the output data of the
FFT core starts to be available.
The state machine waits the end of all outputs data through the dv fft core signal. A
new FFT is started only when the unload operation is ended and new set of samples
are available.

start to load the samples inside
the FFT reading from the RAM

selected

START_FFT

set the scaling vector for the
FFT

SET_SCALING

reset counter -> cnt = 0
reset the FFT_ip_core

RESET_STATE

cnt = 1023
?

reset

wait READY

yes

no

cnt ++
addr = cnt

LOAD_FFT

waiting that fft_ip_core
performs te algorithm

WAITING
PROCESSING

Waiting until the last FFT
result

UNLOAD

data available
?

yes

no

new FFT
?

yes

no

data available
?

no

yes

yes

no

FFT finished ?

no

yes
send the signal to

unload the FFT result

UNLOAD_EN

waiting the data are available
on the fft_ip_core output

WAITING_DV

Figure 5.11: ASM chart FFT Controller

43

5 – Hardware implementation of Energy Detection

start_fft_core = '1'
en_counter = '1'

START_FFT

scale_sch_we_fft_core = '1'

SET_SCALING

sclr_counter = '0'
sclr_fft_core = '0'

RESET_STATE

tc_counter?

reset

READY = '1' ?

yes

no

en_countre = '1'

LOAD_FFT

waiting that fft_ip_core
performs te algorithm

WAITING
PROCESSING

Waiting until the last FFT
result

UNLOAD

dv _fft_core
?

yes

no

waiting the data are available
on the fft_ip_core output

WAITING_DV

unload_fft_core = '1'

UNLOAD_EN

READY = '1' ?

yes

no

dv _fft_core
?

no

yes

yes

no

e_done
?

no

yes

Figure 5.12: Control ASM Chart FFT Controller

5.3 Square Magnitude Module

The second shared module among the two architecture is the Square Magintude
Module as mentioned in the Figure 5.1.
The magnitude of a complex number is defined as (Equation 5.1):

|Y | =
√
Re[X]2 + Im[X]2 (5.1)

Evaluating the square magnitude of a complex number the expression becomes(Equation

44

5.3 – Square Magnitude Module

5.2):
|Y |2 = Re[X]2 + Im[X]2 = Re[X] ·Re[x] + Im[X] · Im[x] (5.2)

As can be noticed the square root operator is not needed and the result can be
evaluated with only multiplication and addition operations. The high level structure
of this unit is shown in Figure 5.13. The output data from the FFT module is defined
on 16 bits signed format, the multiplication stage moves the data parallelism to 32
bits. For the next addition stage the bus length is kept fixed to 32 bits. This because
two signed binary data squared will be always positive and knowing that the data
uses a fixed point representation with only the signed bit as integer part, 32 bits
result enough without overflow.

+

x

x

xk_re [15:0]

xk_re [15:0]

xk_im [15:0]

xk_im [15:0]

xk_sqm [31:0]

xk_re_sq[31:0]

xk_im_sq [31:0]

Figure 5.13: High Level architecture SQM unit

The Figure 5.14 represents the implemented module. The unit is characterized
by five inputs:xk re, xk im, dv fft, clock, reset and two outputs: xk sq m and dv sq m.
Also for this scope IP cores from the Xilinx ISE suite hase been used.
The multiplier core is generated using one DSP48A unit available inside the Spartan
3A-DSP 3400 FPGA. The latency of this multiplier is of four clock cycles, for that
reason the dv fft is delayed of 4 cycles with 4 FFs. Two identical multipliers have
been instantiated to handle the imaginary and real components.
The adder core is implemented also using the DSP48A unit and its latency is of 2
clock cycles.
Overall to have the correspondence between the bus data and the data available
signal 6 FFs are needed. The Figure 5.15 shows the behaviour of the data available
signal respect the data processing results.

45

5 – Hardware implementation of Energy Detection

MULTIPLIER
DSP48A

a [15:0]

b [15:0]

sclr

clk

p[31:0]

MULTIPLIER
DSP48A

a [15:0]

b [15:0]

sclr

clk

p[31:0]

ADDER
DSP48A

a [31:0]

b [31:0]

sclr

clk

p[31:0]

d q

clk

FFD

d q

clk

FFD

d q

clk

FFD

d q

clk

FFD

d q

clk

FFD

d q

clk

FFD

xk_re [15:0]

xk_im [15:0]

reset

dv_fft

clock

xk_sq_m [15:0]

dv_sq_m

SQUARE MAGNıTUDE
UNıT

Figure 5.14: SQM implemented architecture

clock

xk_re a b

xk_im c d

dv_fft

xk_re_sq a*a b*b

xk_im_sq c*c b*b

dv_sq

xk_sq_m a*a+c*c b*b+d*d

dv_sq_m

Figure 5.15: Timing diagram SQM Unit dv signal vs data bus

5.4 ED Module Fixed Threshold

The module, shown in Figure 5.16, represents the Energy Detection Unit for the
fixed threshold algorithm explained in the section 4.3.1. The input ports of the unit
are:

• clock ;

• reset ;

46

5.4 – ED Module Fixed Threshold

setting_reg

clk
rst
strobe
addr[7:0]
in[31:0]

out

sr1

setting_reg

clk
rst

strobe
addr[7:0]

in[31:0]
out

sr3

DATAPATH UNIT ED

xk_sq_m [31:0]

th_value [31:0]

window_size [9:0]

clock

pop_fin

sclr_fin

pop_fout

push_fout

sclr_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt2

en_cnt2

sclr_dres

en_dres

empty_fin

cnt1_tc

cnt2_tc

xk_sqm_dt[31:0]

en_cnt1

sclr_cnt1

CONTROL UNIT ED

clock

reset

pop_fin

sclr_fin

pop_fout

push_fout

sclr_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt2

en_cnt2

sclr_dres

en_dres

empty_fin

cnt1_tc

cnt2_tc

en_cnt1

sclr_cnt1

push_fin

d q

clk

FFD

rst
xk_sq_m[31:0]

dv_sq_m

clock

reset

set_data
[31:0]

set_addr[7:0]

set_stb

xk_sq_m_dt
[31:0]

dv_sq_m_dt

ENERGY DEETECTıON
MODULE

Figure 5.16: Energy Detector top level (Fixed Threshold)

• xk sq m, the sqm data of the spectrum analysed, defined on 32 bits;

• dv sq m, the signal for data available;

• set data, a data bus of 32 bits for set values inside the user registers;

• set address, an address bus of 8 bits to select the specific user register;

• set stb, a strobe signal to inform the user register about the address.

The unit has instead just two output ports: dv sq m dt and xk sq m dt. This
last one is defined on 32 bits and these are divided as following:

• MSB [31] bit represents the respective signal detection of the bin;

• other [30:0] bits represent the square magnitude spectrum value of the bin.

The module has been implemented with an hierarchical approach. The top level
of the module is shown on the Figure 5.16. One user register is used to select the size
of the sub-band (M) and the other one to settle the threshold (λ) value, evaluated
with the Equation 4.1. The Control Unit ED is composed by two FSMs: one for
the energy evaluation and comparison (Control Unit Detection) and the other one

47

5 – Hardware implementation of Energy Detection

for a packing operation of the result (Control Unit Packing).

The Datapath Unit ED receives control signals from the control unit and sends
status signals that are:

• empty fin active high when the input FIFO is empty;

• cnt1 tc active high for one clock cycle when the detection counter reaches the
terminal count;

• cnt2 tc active high for one clock cycle when the repacking counter reaches the
terminal count.

Figure 5.17 shows the Datapath Unit ED. Two FIFOs of the size 1024 buffer
samples to be processed. The data coming from the SQM unit is a stream of 1024
samples each every clock cycle. Processing these samples with a pipelined structure
in one clock cycle is very difficult and needs a lot of resources. The incoming data
is stored in the first FIFO and then processed. The push operation is controlled by
the dv sq m input signal.
Another FIFO is used to buffer the value of sub-band bins processed because these
will be send to the Host CPU with the detection result. The push operation of
this FIFO is controlled by the Control Unit Detection instead the pop operation is
handled by the Control Unit Packing.

Exploiting as in the previous modules the IP core generator of Xilinx suite, one
accumulator unit and the FIFOs have been generated.
The accumulator IP core issues one input port to select if the sample has to be
added or subtracted. This feature can be exploited as a comparator operation. As
reported in the algorithm (Section 4.3.1), the bins inside the sub-band has to be
summed and then compared with the threshold. Comparison operation can be eval-
uated through a subtraction of the threshold value after the accumulation of all
bins inside the sub-band. The sign bit of the result is the signal detection result;
this value is stored inside a FF and then used to repack the sub-band bins value
evaluated.
The counter labelled counter detection (Figure 5.17) is used to select the right num-
ber of bins in one sub-band. The terminal count value can be changed through
the window size user register and is evaluated with a bitwise EX-NOR operation
between the window size and the cnt1 values.
With the same approach the counter labelled counter packing stores the number of
sub-band bins packed. In this case the terminal count TC is handled by the Control
Unit Packing.

The two FSMs communicate among them, the Control Unit Detection when
finishes to compare the threshold, with te signal end sig inform the second one to

48

5.4 – ED Module Fixed Threshold

ACCUMULATOR

b [31:0]

add/sub_n

ce

sclr

clk

p[31:0]

COUNTER
mod 10

ce

sclr

clk

q[9:0]

s
0

1

AND
 cnt1[9:0]

 cnt1[0]

 cnt1[9]

 w_sz[0]

 w_sz[9]

COUNTER
mod 10

ce

sclr

clk

q[9:0] AND
 cnt1[9:0]

 cnt1[0]

 cnt1[9]

 w_sz[0]

 w_sz[9]

dout_ew [31]

FIFO_S1024

din [31:0]

wr_en

dout [31:0]
rd_en

clk empty

srst

FIFO_S1024

din [31:0]

wr_en

dout [31:0]
rd_en

clk empty

srstxk_sqm [31:0]

push_fin

sclr_fin

pop_fin

push_fout

sclr_fout

pop_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt1

en_cnt1

sclr_cnt1

en_cnt1

th_value [31:0]
xk_sq_m_dt[30:0]

 xk_sq_m_dt [31]

empty_fin

xk_sq_m_dt[31:0]

cnt2_tc

cnt1_tc

window_size[9:0]

clock

energy_window

counter_detection counter_packing

DATAPATH UNıT ED

en q

clk

FFD

reset

d

en_dres

sclr_dres

Figure 5.17: Datapath Energy Detector (Fixed Threshold)

start the packing of the result. Split the Control Unit ED into two FSMs allows to
process and pack the samples concurrently and so save some clock cycles.

5.4.1 Control Unit Detection

The Control Unit Detection is a state machine with 9 states: RESET,ACCUMULATE 1,
ACCUMULATE 2, ACCUMULATE 3, COMPARE, WAIT COMP, END COMP
and RESET ACC.
The aim of this FSM is to create a sequence of timed signals to control the Accu-
mulator and so the comparison operation.
The RESET state has the higher priority respect all the other states. When the
present state is RESET all the synchronous clear signals are enabled and so the
FIFOs, the accumulator, the counter are reset.
The state machine, according to the ASM chart shown into Figure 5.20, remains
into a wait state (WAIT DATA) until one stream of samples from the SQM unit is
available. The test condition of this situation is performed on the empty fin status
signal. When the first sample arrives, it is pushed into the FIFO, the empty fin
signals changes from the the binary value ”0” to ”1”.

49

5 – Hardware implementation of Energy Detection

CONTROL UNIT
PACKING

clock

reset

cnt2_tc

end_sig

pop_fout

en_cnt2

sclr_cnt2

CONTROL UNIT
DETECTION

clock

cnt1_tc

empty_fin

reset

en_dres

sclr_dres

sclr_cnt1

end_sig

add_subn_ew

en_cnt1

ce_ew

sclr_ew

push_fout

sclr_fin

push_fin

pop_fin

sclr_fout

empty_fin

cnt1_tc

cnt2_tc

clock

reset

pop_fout

en_cnt2

sclr_cnt2

en_dres
sclr_dres
sclr_cnt1

add_subn_ew

en_cnt1

ce_ew

sclr_ew
sclr_fout
push_fout

push_fin

pop_fin

sclr_fin

CONTROL UNıT ED

end_sig

Figure 5.18: Control Unit ED Module (Fixed Threshold)

If the empty fin binary value is ”0”, the state machine transit to the ACCU-
MULATE 1 state. There are three consecutive states labelled ACCUMULATE.
First pop fin and en cnt1 signals are enabled and then, one clock cycle later, ce ew
andpush fout are activated. This because of the FIFO read operation latency which
is equal to one clock cycle.
The FSM remains into the ACCUMULATE 2 state until the terminal count (cnt1 tc)
is sensed, where the state changes into ACCUMULATE 3. For these three previous
states the accumulator mode is settled as addition.
When the machine enters in the COMPARE state, the accumulator mode changes
into subtraction. The two consecutive states are needed to handle the latency equal
to two of the accumulator. In the WAIT COMP the counter is reset and the accu-
mulator’s clock enable remains active high.
The next state is END COMP where the result of comparison is stored into the FF

50

5.4 – ED Module Fixed Threshold

reset fifo in - out,
 accumulator and

FFs
count = 0

data available?

pop data from fin
cnt++

add operation

cnt=win_size -1?

pop data from fin
push data to fout

enable accumulator
add operation

cnt++

push data to fout
enable accumulator

wait data from
previous
module

ACCUMULATE_1

ACCUMULATE_2

ACCUMULATE_3COMPARE

WAIT_DATA

RESET

reset

NO

YES

YES

NO

reset the
accumulator

RESET_ACC

END_COMP

WAIT_COMP

save the result
send end signal to

packing unit

wait the
accumulator latency

sub threshold to
accumulated result

Figure 5.19: ASM chart Control Unit Detection (Fixed Threshold)

and the end sig is activated to inform the other state machine.
Before restarting the other sub-band the accumulator is reset. The cycle starts again
from checking the data from the FIFO until it will be empty.

51

5 – Hardware implementation of Energy Detection

sclr_fin = 1
sclr_fout = 1
sclr_ew = 1
sclr_cnt1 = 1
sclr_dres = 1

empty_fin = 1?

pop_fin = 1
en_cnt1 = 1

add_subn_ew = 1

cnt=win_size -1?

ce_ew = 1
push_fout = 1
pop_fin = 1
en_cnt1 = 1

add_subn_ew = 1

ce_ew = 1
push_fout = 1

add_subn_ew = 1

ce_ew = 1
add_subn_ew = 0

end_sig = 0

ACCUMULATE_1

ACCUMULATE_2

ACCUMULATE_3COMPARE

WAIT_DATA

RESET

reset

YES

NO

YES

NO

sclr_ew = 1

RESET_ACC

end_sig = 1
en_dres = 1

END_COMP

sclr_cnt1 = 1
ce_ew = 1

WAIT_COMP

Figure 5.20: Control ASM chart Control Unit Detection (Fixed Threshold)

5.4.2 Control Unit Packing

The second FSM has the aim to pack the detection result with the SQM bin value.
The detection result is expressed by one bit and its value is only ”0” or ”1”. Re-
ducing of one bit the SQM value from 32 to 31 bits, the energy detection result is
placed as the MSB bit. This packing operation is done by hardware link selecting
the respective bits.

52

5.4 – ED Module Fixed Threshold

The control unit Detection analyses only one sub-band of m bins at time, the value
of such m bins are stored into the second FIFO (Figure 5.17).
As reported in the ASM chart (Figure 5.22), the state machine waits the signal
end sig from the other FSM and then start to pop data from the FIFO until all
bins of the sub-band are finished. The number of bins are counted by the counter
packing presents in the datapath.

This FSM is characterized by only two states: RESET and POP DATA. In the
RESET state simply the counter is reset to ”0”, instead in the other state data is
read from the FIFO and the counter is enabled.

reset the counter

comparison
ended?

enable counter
pop data

POP_DATA

RESET

reset

YES

NO

cnt =wd_size -1 ?

YES

NO

Figure 5.21: ASM chart
Control Unit Packing

 sclr_cnt2 = 1

end_sig =1?

en_cnt2 = 1
pop_fout = 1

POP_DATA

RESET

reset

YES

NO

tc_cnt2 = 1?

YES

NO

Figure 5.22: Control ASM chart
Control Unit packing

53

5 – Hardware implementation of Energy Detection

5.5 ED Module Adaptive Threshold

The module for the adaptive threshold includes some more units respect the fixed
one. As explained in the Section 4.3.2, the algorithm needs to evaluate the mean
value of the all bins, performed in the D Factor module.
Because the WBX daughterboard, used inside the USRP device, induces a dc com-
ponent and other components near the dc, the normalized spectrum values result
smaller. To reduce this effect a DC elimination module has been implemented, sim-
ply, it put to zero some bins near the dc component. The position of these bins is
evaluated by the software and the value is settled into three user registers.
The three modules mentioned before are connected in cascade mode starting from
the DC elimination, then the D factor evaluation and finally the detection module
(Figure 5.23). The following sub-sections explain in details each module how is
implemented.

DC ELIMINATION
UNIT

D FACTOR UNIT
ENERGY DETECTION

UNIT

ED ADAPTıVE THRESHOLD UNıT

DATA
SYNCHRONIZER

 SQM

Figure 5.23: Energy Detector Adaptive Threshold

5.5.1 DC Elimination Module

The schematic of this module is shown in Figure (5.24). Three user registers are
used to know the position of three bins to be reset. The dc component and other
contributions around it are not positioned always to the central frequency requested.
The receiving chain of the USRP is composed by a RF front-end part first and then
a Digital Down Converter (DDC). The ”noise” contribution comes from the first
section of the chain.
The RF front-end includes a PLL that can’t be locked to every frequency, but it is
settled to the nearest frequency available to the target one. Then the DDC adapts
the frequency range remained between the target and the RF front-end frequency.
Exploiting the results of the tuning central frequency command used by the software,
the RF front-end frequency can be known precisely and so also the positions of
these ”noise” bins. These values are stored into three different user registers used
as terminal counts to select the right bin on the 1024 bins of the FFT performed.
From Figure (5.24) the architecture can be easily understood. One counter counts

54

5.5 – ED Module Adaptive Threshold

the bins and at the right position the terminal count changes its value from ”0” to
”1”. Therefore also the multiplexer changes its state selecting zero instead of the
incoming sample.
The registers and flip flops are used to divide the module respect the others in the
chain in order to reduce the critical path.
To have a more readable figure the user registers has been neglected, just a data
bus is used to recall the user register function.

COUNTER
mod 10

ce

sclr

clk

q[9:0]

d q

clk

FFD

d[32] q[32]

clk

REG

s
0

1

d q

clk

FFD

d[32] q[32]

clk

REG

TC2

TC1

TC3

"0"

data_in [31:0]

clock

dv_out

data_out [31:0]

reset

dv_in

tc1_val [31:0]

tc2_val [31:0]

tc3_val [31:0]

DC ELıMıNATıON UNıT

Figure 5.24: DC Elimination Module

5.5.2 D factor Module

Recalling the Algorithm explained in Sub-section 4.3.2, the expression of D factor
is given by the Equation 4.2. Each bin of FFT performed has to be normalized by
the mean value over all bins.
The Figure 5.25 shows the architecture of this module. Two steps are performed the
first about the mean value evaluation and the second one the division of each bin
by the nearest mean value power of 2. This allows to perform the division operation
using a simple right shift.
The average is performed using an accumulator that adds each bin every clock cycle
until the counter reaches the terminal count. Then a right shift by 10 is done to
divide by 1024 to perform the mean operation.
The samples at the same time which are added, they are also stored into a FIFO of
size 1024. When the mean value is evaluated, one sample each clock cycle is popped
from the buffer and it is shifted by an amount power of two.

The average value of bins is rounded to the nearest power of two by a synchronous
priority encoder described as following:

55

5 – Hardware implementation of Energy Detection

COUNTER
mod 10

ce

sclr

clk

q[9:0]

ACCUMULATOR

b [31:0]

ce

sclr

clk

p[40:0]

dq

clk

FFD

d q

clk

FFD

d q

clk

FFD

d q

clk

TFF

FIFO_S1024

din [31:0]

wr_en

dout [31:0]
rd_en

clk

srst

SHIFT REG

d[31:0]

a[4:0]

sclr

clk

q[31:0]

PRIORITY
ENCODER

data_in[30:0]

dv_in

sclr

clk

data_out[4:0]

s
0

1

COUNTER
mod 10

ce

sclr

clk

q[9:0]

[40:10]

"00001"

data_in [31:0]

dv_in

reset

clock

dv_out

data_out [31:0]

D FACTOR UNıT

Figure 5.25: D factor module

module p r i o r i t y e n c o d e r 3 2 t o 6 (input c lock , input r e s e t ,
input [3 1 : 0] data in ,
input dv in ,
output reg [5 : 0] data out) ;

always @ (posedge r e s e t , posedge c l o ck)
begin

i f (r e s e t == 1 ’ b1) begin
data out = 6 ’ b000000 ;

end
else begin

i f (dv in) begin
i f (da ta in [3 1] == 1 ’ b1) begin

data out =32;
end else i f (da ta in [3 0] == 1 ’ b1) begin

data out =31;
. . .
end else i f (da ta in [1] == 1 ’ b1) begin

data out =2;
end else i f (da ta in [0] == 1 ’ b1) begin

data out =1;
end else begin

data out =0;
end

end // i f (enab le)
end // e l s e : ! i f (r e s e t == 1 ’ b1)

end // always @ (posedge rese t , posedge c l o c k)
endmodule

56

5.5 – ED Module Adaptive Threshold

The output of this encoder is used to control the shift amount of a parallel shift
register.
This shift register loads one bin value, shifts it by a amount and releases the result
on the parallel output port (q).
A series of flip flops are used to generate the data available signal and to reset the
counter. The terminal count of the left counter (Figure 5.25) toggles the T flip flop
used to enable the second counter.
The count of bins to be divided is handled by this last counter, when it reaches the
terminal count re-toggles the T-FF, resetting it.

About the data length, the port size of the accumulator is chosen as 40 bits to
avoid the overflow over the sum of 1024 samples. Then for the right shift operations,
the data length is brought again to 32 bits.

As in the module explained in the other sections there are a pair of signals for
input and output: data in(on 32 bits), dv in and data out(on 32 bits), dv out.

5.5.3 Energy Detection Unit

Based on the fixed threshold architecture, the Energy Detection unit is updated to
the adaptive case. The spectrum values, normalized by the D factor module and
without the dc component, are analysed to understand the presence or not of trans-
mitting signals.
The top level module is shown in the Figure 5.26, comparing it with Figure 5.18
there are few new signals. Instead of receiving directly data from the SQM unit,
data comes from the D factor unit.
Two main units: Datapath unit ED and Control unit ED compose the module. The
input and the output ports remains identical changing only the name. Two user
registers are used as in the other architecture. The first indicates the number of
bins of a sub-band and the second indicates the λ∗ value.
The status signals sensed by the Control unit remains the same as the fixed architec-
ture. The Control Unit ED has to handle some new control signals. The final output
value does not change respect the fixed threshold architecture and it is defined on
32 bits, where:

• MSB [31] represents the detection result;

• other [30:0] bits represent the normalized bin value.

As all modules explained before the output signal is paired with a data valid signal:
dv d fct dt.

57

5 – Hardware implementation of Energy Detection

setting_reg

clk
rst
strobe
addr[7:0]
in[31:0]

out

sr1

setting_reg

clk
rst

strobe
addr[7:0]

in[31:0]
out

sr3

DATAPATH UNIT ED

xk_d_fct [31:0]

th_value [31:0]

window_size [9:0]

clock

pop_fin

sclr_fin

pop_fout

push_fout

sclr_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt2

en_cnt2

sclr_dres

en_dres

empty_fin

cnt1_tc

cnt2_tc

xk_d_fct_dt[31:0]

en_cnt1

sclr_cnt1

CONTROL UNIT ED

clock

reset

pop_fin

sclr_fin

pop_fout

push_fout

sclr_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt2

en_cnt2

sclr_dres

en_dres

empty_fin

cnt1_tc

cnt2_tc

en_cnt1

sclr_cnt1

push_fin

d q

clk

FFD

rst

xk_d_fct[31:0]

dv_d_fct

clock

reset

set_data
[31:0]

set_addr[7:0]

set_stb

xk_d_fct_dt
[31:0]

dv_d_fct_dt

ENERGY DEETECTıON
MODULE

ce_thw

select_th

ce_thw

select_th

Figure 5.26: Energy Detector top level (Adaptive Threshold)

The Datapath schematic is shown in the Figure 5.27. The incoming data is
stored in the input FIFO and then processed. Two accumulators are used instead
of one. The first accumulator (energy window accumulator) is used to accumulate
the sub-band bins and compare these with the threshold. The second accumulator
(adaptive threshold accumulator) has the aim of evaluate the threshold accumulating
the sub-band bins, shifted of a fixed position, and then adding the base threshold λ∗

(Equation 4.4). The comparison operation is performed again using the subtraction,
the threshold evaluated by the adaptive threshold accumulator is subtracted to the
Dwindow value performed by the energy window accumulator. Two different multi-
plexers connected to the input ports of the accumulators allows to select the right
input value. For the energy window accumulator the multiplexer selects between the
input samples and the final threshold value. The second one instead selects between
the λ∗ value and the D factor bins shifted.
The sign bit of the subtraction represents the detection result and it is stored into
a FF.
The number of sub-band bins is used to implement the terminal count for both the
counters. The terminal count is represented by just a rectangle unit to have a lighter
schematic but is implemented, as in the fixed architecture, using a bit-wise EX-NOR
gate. When the value corresponds to the count value, the TC changes from ”0” to
”1”. Cnt1 tc and cnt2 tc are status signal used by the two FSMs implemented in

58

5.5 – ED Module Adaptive Threshold

the Control Unit ED. The second FIFO presented in the Figure 5.27 is used for the
packing operation when the detection result is available. The normalized samples
popped from the first FIFO are pushed directly in the second one and in the input
multiplexer of energy window accumulator.

ACCUMULATOR

b [31:0]

add/sub_n

ce

sclr

clk

p[31:0]

COUNTER
mod 10

ce

sclr

clk

q[9:0]

d q

clk

FFDs
0

1

TC_cnt1

 cnt1[9:0]

COUNTER
mod 10

ce

sclr

clk

q[9:0] TC_cnt2

 cnt2[9:0]

dout_ew [31]

FIFO_S1024

din [31:0]

wr_en

dout [31:0]
rd_en

clk empty

srst

FIFO_S1024

din [31:0]

wr_en

dout [31:0]
rd_en

clk empty

srstxk_d_fct [31:0]

push_fin

sclr_fin

pop_fin

push_fout

sclr_fout

pop_fout

sclr_ew

ce_ew

add_subn_ew

sclr_cnt1
en_cnt1

en_cnt1

th_value [31:0]

xk_sq_m_dt[30:0]

xk_sq_m_dt [31]

empty_fin

xk_d_fct_dt[31:0]

cnt2_tc

cnt1_tc

window_size[9:0]

clock

energy_window

counter_detection counter_packing

DATAPATH UNıT ED
ADVANCED

sclr_cnt1

s
0

1

ACCUMULATOR

b [31:0]

add/sub_n

ce

sclr

clk

p[31:0]
"1"

ce_thw
select_th

adapted_threshold

 {"0",[31:0]}

Figure 5.27: Datapath Energy Detector (Adaptive Threshold)

Figure 5.28 shows the Control Unit ED module. It includes two FSMs: one to
handle the signals for the detection part (Control Unit Detection) and one to pack
detection result with normalized spectrum values (Control Unit Packing). The two
FSMs communicate together trough the end sig signal: when the detection result is
ready the Control Unit Detection activates this signal as a start signal for the other
state machine. The following paragraph explains how is structured the Control Unit
Detection. The Control Unit Packing remains the same as the fixed architecture, it
is suggested to the reader of take a look at the Subsection 5.4.2.

Control unit Detection

The Control Unit Detection is a state machine which it controls all steps to evaluate
the sub-band energy value, the threshold and compare the two values.
The FSM is characterized by eleven states as reported in the ASM chart Figure 5.30:

59

5 – Hardware implementation of Energy Detection

CONTROL UNIT
PACKING

clock

reset

cnt2_tc

end_sig

pop_fout

en_cnt2

sclr_cnt2

CONTROL UNIT
DETECTION

clock

cnt1_tc

empty_fin

reset

sclr_cnt1

en_cnt1

select_th

end_sig

add_subn_ew

ce_thw

ce_ew

sclr_ew

push_fout

sclr_fin

push_fin

pop_fin

sclr_fout

empty_fin

cnt1_tc

cnt2_tc

clock

reset

pop_fout

en_cnt2

sclr_cnt2

sclr_cnt1
en_cnt1
select_th

add_subn_ew
ce_thw

ce_ew
sclr_ew
sclr_fout
push_fout

push_fin
pop_fin

sclr_fin

CONTROL UNıT ED

sclr_dres

en_dres

sclr_dres
en_dres

Figure 5.28: Control Unit (Adaptive Threshold)

RESET, WAIT DATA, ACCUMULATE 1, ACCUMULATE 2, ACCUMULATE 3,
TH EV1, TH EV2, COMPARE, WAIT COMP, END COMP and RESET ACC.
Comparing the number of states with the fixed threshold one there are two additional
states, these states are used to evaluate, with the adaptive threshold accumulator,
the λ value.
The RESET state has the higher priority respects the other states and it enables
all the synchronous clear or reset signals inside the datapath. When an incoming
stream of data is available, the input FIFO changes the empty status signal from
the binary value ”1” to ”0”. If the FIFO remains empty, the state machine check
continuously this status signal remaining into the WAIT DATA state. When the

60

5.6 – Data Synchronizer

test condition is satisfied the state changes into ACCUMULATE 1. There are three
states labelled ACCUMULATE.
ACCUMULATE 1 enables the read operation from the input FIFO and the counter.
The next two states the two accumulators starts to accumulate (add subn ew =1)
samples until the number of sub-band bins is reached. Moreover the data is stored
at the same time into the output FIFO.
When the state becomes TH EV1, the λ∗ value is added to the adaptive threshold
accumulator. Then another state TH EV2 is used to handle the latency of the accu-
mulator, in this state the subtraction operation is selected for the energy detection
accumulator which is disabled during the TH EVx states.
Proceeding in sequence the next step is to compare the threshold value with the sub-
band D factor value accumulated. States COMPARE and WAIT COMP controls
the compare operation; the second state is used to handle the accumulator latency.
Then the last state of the cycle is END COMP where the signal used to store the
result in the FF (present in the data path) is activated. Moreover in this state the
second state machine, Control Unit Packing, is informed that the result is available
and the pack operation can be started.

5.6 Data Synchronizer

The last module of the FPGA system is the Data Synchronizer. Except before the
Fourier Transform the data flows is a stream of 1024 samples one each clock cycle.
This stream of samples has to be re-adapted to the format used before the custom
module, where new sample comes at fs frequency as shows the Figure 5.3.
The schematic of this unit is shown in the Figure 5.6.
The module uses a FIFO of size 1024, a modulo 4 counter and some logic units
to evaluate the terminal count (EX-NOR gates and AND gates). As done for the
energy detection units the terminal count value is stored into a user register that
can be settled by software. In that way the sample frequency of the ADC can be
changed; the only constraint to be respected is: the ratio between fclock and fs has
to be an integer value.
The data incoming in the module is stored into the FIFO, the write signal is con-
nected to the dv in signal.
When the empty signal changes its binary value from ”1” to ”0” and the TC of the
counter is active high, the FF used for the dv out signal generation changes its value
from ”0” to ”1”. The Figure 5.32 shows an example of timing between the signals
of the module.
The counter is in a free running condition and it recreates the fs frequency dividing
the fclock. The pop operation is performed by the terminal count of the counter and
so at fs frequency.

61

5 – Hardware implementation of Energy Detection

reset fifo in - out,
 accumulator and

FFs
count = 0

data available?

pop data from fin
cnt++

add operation

cnt=win_size -1?

pop data from fin
push data to fout

enable accumulators
add operation

cnt++

push data to fout
enable accumulators

wait data from
previous
module

ACCUMULATE_1

ACCUMULATE_2

ACCUMULATE_3COMPARE

WAIT_DATA

RESET
reset

NO

YES

YES

NO

reset the
accumulators

RESET_ACC

END_COMP

WAIT_COMP

save the result
send end signal to

packing unit

wait the
accumulator latency

sub threshold to
accumulated result

add base threshold
value

final threshold value

TH_EV1TH_EV2

Figure 5.29: ASM chart control unit detection (Adaptive Threshold)

62

5.6 – Data Synchronizer

sclr_fin = 1
sclr_fout = 1
sclr_ew = 1
sclr_cnt1 = 1
sclr_dres = 1

empty_fin = 1?

pop_fin = 1
en_cnt1 = 1

add_subn_ew = 1

cnt=win_size -1?

ce_ew = 1
ce_thw = 1

push_fout = 1
pop_fin = 1
en_cnt1 = 1

add_subn_ew = 1

ce_ew = 1
push_fout = 1

add_subn_ew = 1

ce_ew = 1
add_subn_ew = 0

end_sig = 0

ACCUMULATE_1

ACCUMULATE_2

ACCUMULATE_3COMPARE

WAIT_DATA

RESET

reset

YES

NO

YES

NO

sclr_ew = 1

RESET_ACC

end_sig = 1
en_dres = 1

END_COMP

sclr_cnt1 = 1
ce_ew = 1

WAIT_COMP

ce_thw = 1
add_subn_ew = 1

select_th = 1

ce_thw = 1
add_subn_ew = 0

TH_EV1TH_EV2

Figure 5.30: Control ASM chart control unit detection (Adaptive Threshold)

63

5 – Hardware implementation of Energy Detection

FIFO_S1024

din [31:0]

wr_en

dout [31:0]

rd_enclk

empty

srst

DATA SYNCRHONıZER

COUNTER
mod 10

sclr

clk

q[9:0] AND
 cnt1[9:0]

 cnt1[0]

 cnt1[9]

 tc[0]

tc[9]

data_in[31:0]

d q

clk

FFD

dv_in

data_out[31:0]

dv_out

tc

clock

sclr

Figure 5.31: Data Synchronizer Module

clock

data_in a b c d e f g h i l

dv_in

count 2 3 4 5 6 7 8 9 0 1 2

tc_cnt

empty

data_out a

dv_out

a

b

c

Figure 5.32: Data Synchronizer Timing Diagram

64

Chapter 6

Software Scanning Technique and
Implementation

6.1 Introduction

The hardware implemented, synthesized and flashed into the FPGA has to be con-
trolled by the Host CPU as explained in the Chapter 4.
This Chapter has the aim to explain how the software program is organized and
how the retuning of the central frequency can be done in a reliable way.
Several environments can be used to control the USRP device and are based on a
C++ library called UHD Driver. Developers gives some examples to use this library
and a web page for the description of functions and classes.

6.1.1 Tuning Method and Policies

Figure 6.1 shows the receiver and transmitting chain differentiating the motherboard
respect daughterboard.
The WBX daughterboard is based on two chips from Analog Devices, the ADL5387
quadrature demodulator and the ADL5385 quadrature modulator. The Analog
Devices ADF4350 (Wideband Synthesizer with Integrated VCO), used to implement
the Phase-Lock-Loop with a voltage controlled oscillator integrated, synthesises the
local oscillator signals that drive the ADL538x.
Reading the datasheet of the PLL the typical lock time without any improvement
is of 400µs. If a particular register (CSR) of ADF4350 is enabled the lock time is
improved up to 200µs.

The tuning operation on the USRP-N210 is performed by two steps. First the
WBX daughterboard (local oscillator) is settled as close as possible to the target
frequency. The frequency generated by the local oscillator is called RF-frequency.
After the fRF of the daughterboard is settled, the Digital Down Converter (DDC) or

65

6 – Software Scanning Technique and Implementation

T
ra

ns
m

it
C

on
tr

ol

UP Conversion

LO

R
ec

ei
ve

 C
on

tr
ol

DUC
(Digital Up

Conversion)
DAC

Transmit
Amplifier

RX/TX

DDC
(Digital Down
Conversion)

ADC UP Conversion

LO

Drive
Amplifier

RX2

E
th

er
ne

t

Low Noise
Amplifier

USRP WBX

Figure 6.1: USRP and WBX block diagram

Digital Up Converted (DUC) of the USRP-N210, is set to refine the remain difference
in frequency. This second step is performed only in case a frequency difference is
present. The frequency generated by the DDC or DUC is called DSP Frequency.
When the tune request command is sent to USRP, the result of the tuning request
is available to the user. It gives info about both the frequencies mentioned before.
The UHD driver provides three different polices for frequency tuning [16]:

• Auto;

• Manual;

• None.

Each policy can be applied separately on the RF-frequency and the DSP frequency.
Therefore 32 possible options can be used.

A deep analysis on the tuning performances of all possible configurations has
been performed by Galal in [17]. The daughterboard used by this team was the
RFX2400 but similar considarations can be done on the WBX daughterboard. The
method followed by these researchers is to exploit the sensor lock value, available
on the UHD driver, to measure the settle time for a tune request. All the different
possibilities between the polices have been compared. Some of the 32 possibilities
can be excluded because the difference between generated frequency and the target
one is large. These pairs are None-Auto and None-Manual. The first policy is re-
ferred to the RF-frequency and the second to the DSP one.
Obviously the None-None configuration is an inappropriate combination because
generates only the center frequency of the daughterboard.
Not all the combinations covers full frequency span of the board, so another group
has to be discarded which is Auto-None and Manual-None. Among the remaining
policies the Auto-Auto configuration remains the best compromise with the best

66

6.1 – Introduction

average lock time.
The study performed by Galal also shows the difference between the RF-frequency
and the DSP frequency lock times. The DUC and DDC uses a NCO, therefore the
lock time is very low. The RF-frequency lock time instead, because the presence of
the PLL and VCO, is relatively high.

The system has to scan a wide frequency bandwidth continuously, an important
question is: how often the retune request can be sent?
From the previous analysis the first constraint is due by the lock time of the local
oscillator, the second one instead is about the processing time used by the FPGA
to send the result to the Host CPU.
The first constraint implies an average lock time around 500µs. The second con-
straint in the worst case is about 280µs. To provide some margin, the delay between
the retune command and the receive samples command is considered as 1 millisec-
ond. For a conventional OS is difficult to guarantee sending commands every mil-
liseconds. To manage this limitation, Ettus Reserch has introduced the concept of
timed commands.
Timed commands permit to indicate the precise time when a command should be
executed. The precision of this time is dictated by the FPGA clock (precise to mi-
croseconds or less). The device has a dedicated input FIFO for this feature which
it allows to send up to 16 commands in advance before are executed. In case the
Host CPU lags for some reason there are already other commands in queue which
will be executed.

The Algorithm 1 shows the method used in the software program to retune and
receive samples in a reliable way. As should be noticed some commands are sent
in advance, then each time one stream of samples is received an additional pair of
timed command is sent. In case a software lag is encountered the time t0 of the
FPGA is recorded again and the new timed commands are based respect this new
value.

67

6 – Software Scanning Technique and Implementation

Algorithm 1 Re-tuning and receive samples

1: Initialize the USRP
2: Create a tune request vector to cover the freq. band
3: Record the t0 value from the USRP
4: Create a cmd time vector with each value spaced by a span value
5: for k = 0 to k = 8 do
6: set command time @ cmd time[k]
7: tune request[k]
8: rx stream command @ cmd time[k]+delta

end for
9: while (1) do

10: receive samples
11: if receiving time > span time then
12: start from a new time t0

end if
13: set command time @ cmd time[k]
14: tune request[k]
15: rx stream command @ cmd time[k]+delta
16: k++
17: if k > kmax then
18: k = 0

end if
end while

68

6.1 – Introduction

6.1.2 Software Enviroments

Different environments are available to control the USRP device, all of them are
based on a C++ library. The software can be written directly in C++ language
recalling the objects and methods available on the library, or in Phyton language.
Users writes often the programs in Phyton language because the USRP is completely
integrated in the Gnuradio1 platform.
To have the best control of the USRP a low level approach is followed: the program
to be run by the Host CPU has been written into C++ program language.
The examples provided by the developers has been analysed in order to understand
how to receive a stream of data, how to retune the central frequency etc. These
examples are not very exhaustive such as the usage of timed commands. In order
to complete the documentation of the device, there is available an open community
based on a mailing list for support.
Another environment used to create a good user interface is GnuPlot . This graphic
utility generates plots of mathematical function or a set of data. Different terminals
selection permit to generate not only directly on the screen the plots but also pictures
in different format, for example: jpg, eps, pdf ecc. For the scope of the program the
terminal selected is wxt which permits to plot graphs directly on the screen.
Thanks to a library called Gnuplot-iostream interface the Gnuplot utility can be
integrated in a C++ program. Basically this interface permits to create an iostream
pipe between the program and Gnuplot to send setting values and data for the
graph.

6.1.3 Software Program

The software part of the system has three major tasks:

• Re-Tuning the RF-frontend;

• Retrieving the data from the USRP;

• Logging the data.

The main program structure is as in the Algorithm 1 with: a first initialization,
a section to send some commands in advance and the final receiving part.
In the program flow first of all an initialization procedure is performed. The sample
frequency(fs), the address of the device, the receiving port, the gain of the PGA
(programmable gain amplifier) and other parameters are settled.

1Gnuradio is free and open-source tool which provides a graphical user-friendly interface and
units to perform signal processing dedicated for Software Define Radio. It can be used with real
external hardware board for SDR or simply without hardware in a simulation like environment[18]

69

6 – Software Scanning Technique and Implementation

Among the previous parameters there are also the user registers mentioned in the
Hardware Implementation (Chapter 5). Depending on the FPGA image used, there
is a different number of user registers to be settled.
The user registers, shared between the two architectures, store the:

• Number of FPGA clock cycles equivalent to fs (address 0);

• Threshold value (λ) (address 1);

• Number of sub-band bins (address 3);

For the adaptive architecture three additional user registers for the dc elimina-
tion module are used, which have the following addresses :4,5 and 6.

The number of FPGA clock cycles equivalent to fs are evaluated by a function
where the sample frequency value settled is passed. In that way the user has just
to indicate the sample frequency without care about this register.
A similar approach is done for the dc elimination user registers used in the adaptive
threshold architecture. When a tune command is performed, the parameters settled
for the RF-frequency and DSP frequency can be read. Because the DC component
is due by the RF-frontend, reading the RF-frequency the DC position can be eval-
uated.
The RF-frequency result of the tuning operation and the target frequency are passed
to a function that evaluates the number of the bin correspondent to the DC com-
ponent. This value is then settled into the appropriate user register. To avoid some
possible lags from the software when the timed commands are sent, all the DC
position values are evaluated during the initialization routine. The RF-frontend is
tuned to all the possible values for scan the range selected and the position values
are stored into a vector to be reused by the program.
After the initialization an array for the timed commands, with the precise time
when the tuning operation will be executed, is created. A first routine sends some
commands in advance as in the Algorithm 1, the sequence on commands for the
fixed threshold is:

for(i=0 ; i<N;i++){

usrp ->set_command_time(cmd_time[i]);

usrp ->set_rx_freq(tune_request[i]);

stream_cmd.time_spec = cmd_time[i]+delta;

rx_stream ->issue_stream_cmd(stream_cmd);

}

70

6.1 – Introduction

In the case of the adaptive threshold instead three more commands has to be
added in order to send the value for the DC elimination. The sequence becomes as
following:

for(i=0 ; i<N;i++){

usrp ->set_command_time(cmd_time[i]);

usrp ->set_rx_freq(tune_request[i]);

usrp ->set_command_time(cmd_time[i]+ delta);

usrp ->set_user_register(DC_EL_TC1_ADDRESS ,dc_tc [3*i],0);

usrp ->set_command_time(cmd_time[i]+ delta+delta);

usrp ->set_user_register(DC_EL_TC2_ADDRESS ,dc_tc [3*i+1] ,0);

usrp ->set_command_time(cmd_time[i]+ delta+delta+delta);

usrp ->set_user_register(DC_EL_TC3_ADDRESS ,dc_tc [3*i+2] ,0);

stream_cmd.time_spec = cmd_time[i]+delta+delta+delta+delta;

rx_stream ->issue_stream_cmd(stream_cmd);

}

For both the sequences a parameter delta has been used. The delta value is the
time laps between two timed commands and it is less than the time between two
tune requests.
The commands sent in the pieces of code presented are :

• set rx freq(tune request): to set the RX center frequency;

• set user register(address,value,mboard): writes on the user configuration reg-
ister bus;

• issue stream cmd(stream cmd): issues a stream command to the usrp device,
this tells the usrp to send samples into the host. The stream cmd variable
contains all informations about streaming.

As should be noticed by the pieces of code written before, the timed command
operation is performed into two steps. Before the set command time(t x) is issued
and then the command that has to be executed at time t x is sent to the USRP.
For the case to retrieve a stream of data at particular time, the stream cmd vari-
able allows to set a parameter called time spec, which has the same scope of the
set command time method. This kind of parameter works only if the stream now
parameter is false. In case is true the stream starts ASAP without cares about the
time spec.
Moreover exist different streaming modes: continuous, n. samples and done and n.
samples and more. In this case the mode selected is n. samples and done.

The third part of the software is defined by an infinite loop.
The data sent by the USRP, through the previous command to start the stream of
samples, is collected into a vector. The received data is split into SQM values and

71

6 – Software Scanning Technique and Implementation

Detection values and then logged into two separate binary files. Before the reorder-
ing of the data routine new timed commands will be sent.
A test on the execution time is performed to understand if some software lags hap-
pen. This test evaluates if the difference between the execution time and the t[i−1]
of the previous tuning operation is bigger that the span time. In case the test gives
a true result the t[i] is reset. The following piece of code shows how this test is
implemented.

if(usrp ->get_time_now (). get_real_secs ()-cmd_time[i-1]>span)

cmd_time[i]=usrp ->get_time_now (). get_real_secs ()+0.001;

else

cmd_time[i]= cmd_time[i-1]+ span;

After the test mentioned the new timed commands for one tuning operation will
be sent.
The received data are stored into two different files one for the SQM and one for the
Detection result. Each value inside the file is paired with the respective frequency
bin.

Referring to the Subsection 6.1.2 a GUI is used to plot the data. To have the
infinite loop as light as possible and avoid a big amount of software lags, the Gnuplot
utility runs a script loaded the first time when the program enter in the loop.
In the initialization part the Gnuplot script is written into a file with all the in-
formations about the frequencies to scan and so the dimensions of the files. Using
Gnuplot in this way has the advantage to use another process linked to the program
through a pipe. This permits to unload the weight of the program.
The script simply reads the data files and plots in the same window two graphs, one
for the detection result and one for the SQM values of the spectrum. The script re-
plots the graphs with a lower rate: each 1 second. Following an example of GnuPlot
script written by the program:

set term wxt 0 size 1366 ,768

while (1){

set multiplot layout 2, 1 title "Energy Detection Frequency span" font " ,14"

set tmargin 2

set title "|Y|^2"

unset key

set xrange [8.8e+07:1.08e+08]

set format y "%e"

set yrange [-0.1:5]

set xtics rotate 90 ,500000

set xlabel "Hz"

plot "SQM.dat" binary format="%lf" with points title ’SQM’

set title "Detection"

set grid

unset key

set xrange [8.8e+07:1.08e+08]

set yrange [-0.1:1.1]

set xlabel "Hz"

72

6.1 – Introduction

plot "Detection.dat" binary format="%lf" with lines title ’DETECTION ’

unset multiplot

set grid

pause 1

}

The user through the command line when runs the program can set the following
parameters:

• Sample rate fs[Hz];

• Gain of the receiving path[dB];

• Starting central frequency[Hz];

• Number of sub-band bins;

• Number of frequency spans;

• Span time[sec];

• Delta time[sec]

73

74

Chapter 7

Results

7.1 Introduction

In this chapter several results from the thesis will be explained: from the hardware
aspects to the system performances in terms of probability of detection and scan
speed.
The first part explains results about the FPGA custom modules synthesised and
the simulation of some modules. After some tests performed to know some charac-
teristics of the system have been explained.
The last section shows the result with a practical experiment with the scanning of
the FM broadcast frequency range in Brussels.

7.2 Hardware simulation and synthesised resources

comparison

7.2.1 Simulation

All hardware modules explained in the Chapter 5 has been simulated with the Xilinx
simulator: ISim, integrated in the Xilinx ISE suite.
The test of this modules has been performed by a test-bench which provides precise
control signals and data to the UUT (Unit Under Test) and it receives results from
the UUT. The input data, created with a Matlab Script, are read from a file and the
data results from UUT are written to a file. To control the correct behaviour a first
comparison with Matlab and simulation results has been performed. A second deep
inspection on the simulation timing diagrams has been done to verify the correct
signal behaviour.
Figure 7.1 shows a graphical representation of the simulation configuration.

75

7 – Results

UUT
GENERATION

CONTROL
SIGNALS

WRITING DATA
RESULT
TO FILE

READING INPUT
DATA

FROM FILE

TEST BENCH

 GENERATION INPUT DATA

 COMPARE RESULTS

Figure 7.1: Simulation Configuration

All Ip cores generated with Xilinx have their own simulation model and a be-
havioural simulation can be performed. As example of one simulation result the
Figure 7.2 shows the simulation of the FFT module.

The samples generated with Matlab, to simulate the FFT module, respect the
following function:

y(t) = sin(2πf2t) · e(i(2πf1t)) (7.1)

where f1 value is 1MHz and f2 value is of 50kHz. The t value in Matlab is described
by an array of time values with a step of t0 = fs

−1. The sample frequency used has
the value of 10MHz.

-5 -4 -3 -2 -1 0 1 2 3 4 5

f[MHz]

-20

0

20

40

60

|Y
|2

 [
d

B
]

FFT Matlab

-5 -4 -3 -2 -1 0 1 2 3 4 5

f [MHz]

-20

0

20

40

60

|Y
|2

[d
B

]

FFT Sim

Figure 7.2: Comparison between Matlab FFT result and module simulation result

The two FFTs, as can be noticed, are very similar. These are not identical

76

7.2 – Hardware simulation and synthesised resources comparison

because the FFT performed in Matlab uses a floating point data format for the
Transform computation, instead the verilog implementation uses a fixed point data
format on 16 bits for decimal part. Anyway the relative error respect the simulation
result, where the signal is present (around 1MHz), is less than 1%.

7.2.2 Synthesised resources comparison

All the FPGA modules created have been integrated in the FPGA source code [19]
of the USRP and then synthesised with the Xilinx ISE suite. To check the correct
behaviour of all modules, different FPGA images has been created. Exploiting
the chain architecture used, only some module has been put in the chain and the
synthesised image has been tested on the device. The following FPGA images has
been created:

• image with the FFT module;

• image with the FFT and SQM module;

• image with the complete chain for the fixed threshold;

• image with the complete chain for the adaptive threshold;

All the FPGA images listed before includes as last module of the chain the Data
Synchronizer Unit. The Table 7.1 shows the resource consumption by the different
images synthesised. The synthesis tool provides a summary report with all the
resources used and results concerned to the timing constraints.

FFT SQM 1 Fixed λ Adaptive λ

Flip Flops 1196(2.5%) 1280(3%) 1499(3%) 1745 (4%)
4-input LUT 1128(2%) 1150(2%) 1357(3%) 1737 (4%)

Slices 429(2%) 433(2%) 582(2%) 1021 (4%)
DSP48A 5(4%) 8(6%) 9(7%) 11 (9%)

RAM16BWER 11(9%) 11(9%) 15(12%) 17 (14%)
1 SQM stands for the image with FFT and SQM units in the chain.

Table 7.1: Resource Consumption FPGA images

As expected the adaptive threshold architecture consumes more resources respect
the others architecture, in particular respect the fixed threshold one. Overall the
resources consumption remains very low and all the architectures uses less resources
than those available.

77

7 – Results

7.2.3 Timing Performances

Simulating and analysing all the latencies of module used, the computational time
has been evaluated in term of clock cycles. As mentioned in previous chapters the
FPGA works at clock frequency of 100MHz. The computational time of the entire
system depends on the sample frequency and on the number of sub-band bins. The
Table 7.2 shows time results considering a fs = 10MHz and M = 8.

Module Clock Cycles Time Cycles Expression

FFT ip core 7385 73.85µs
FFT with RAMs 17625 176.25µs N fclk

fs
+ FFT

SQM unit 6144 61.44µs 6 ·N

Energy Detection Fixed 1674 16.74µs 1024
M

(5 +M) +M + 2

DC elimination unit 1026 10.26µs N + 2

D factor unit 2051 20.51µs 2 ·N + 3

Energy Detection Adapted 1930 1.93µs 1024
M

· (7 +M) +M + 2

Data Synchronizer 1024 10.24µs N fclk
fs

Energy Detection system Fixed 29800 298µs
Energy Detection system Adaptive 26467 264.67µs

difference 3333 33,33µs

Table 7.2: Computational time of hardware modules with fs = 10MHz and M = 8

The last column of the Table 7.2 indicates the expression to evaluate the clock
cycles based on the fs, M and the latency cycles due by IP cores and registers used
in the modules. The N value stands for the size of the FFT which is 1024. Both the
architecture for a sample rate of 10MHz the processing time for one FFT analysis
around a certain fc are less than 300µs.

7.3 System test, characterization and performances

All FPGA images generated has been flashed into the USRP and tested feeding the
URSP with real signals. To generate an appropriate real signal, the Rohde&Schwartz
SMATE200A signal vector generator has been used [20].
The signal generator can generate two independent RF signals from a number of
standards: Bluetooth, GSM, Tetra, CDMA, multicarrier. These two outputs has
been added trough an RF adder and connected to the USRP (Figure 7.3).

78

7.3 – System test, characterization and performances

VECTOR SıGNAL
GENERATOR
SMATE200A

ROHDE&SCHWARZ

USRP N210

(WBX DAUTGHTERBOARD)
RF ADDER

Figure 7.3: Laboratory test set-up

7.3.1 FFT Tests

The first test has been performed on the FFT module synthesised to evaluate the
quality of the FFT. The signal generator has been settled to generate a multicarrier
signal centered at 100MHz with 20 carriers spaced by 200kHz.
The aim of the test is to compare the FFT evaluated by Matlab and the FFT
obtained with the FPGA implementation.
The FFT performed in Matlab is obtained by recording samples in time-domain
from the USRP and performing the FFT off-line. Figure 7.4 shows the comparison
between the two approaches.

It should be noticed that most of the bin values for the FPGA implementation
are zero. This is due to the limitation of fixed-point computations in the FFT. As
explained in the selection of the algorithm for the adaptive threshold, this limitation
does not permit to evaluate directly on the FFT the noise variance level. The Figure
7.5 shows the gap between the noise variance level and the minimum FFT level that
can be sensed.

Other tests changing the standard signal has been done in order to check the
correct operation with different type of signals.
A second test performed on this FPGA image is to understand which is the minimum
sense level in dBm of the FFT module. Generating a Bluetooth standard signal and
changing its transmission peak power, for a receiving sample rate of 10MHz the
minimum level which the signal can be sensed is around of −75dBm.

7.3.2 Energy Detection system Tests

Using a similar approach as in the previous Section 7.3.1 both the two different
architectures has been tested. Two types of environment test have been used: with
the USRP connected to the signal generator and the USRP connected to an antenna.
When an antenna is connected to the USRP the gain of the receiving chain has to be
increased in order to polarize the antenna. This kind of experiment will be explained
in the Section 7.4 where the real FM broadcasting in Brussel has been scanned.
Using the signal generator a first test has been performed in order to check the
correct behaviour. Different combinations of signals has been tested. The Figure

79

7 – Results

95 96 97 98 99 100 101 102 103 104 105

f[Mhz]

-60

-40

-20

0

20

|Y
|²

[d
b]

FFT Matlab

95 96 97 98 99 100 101 102 103 104 105

f[Mhz]

-30

-20

-10

0

10

|Y
|²

[d
b]

FFT FPGA

Figure 7.4: Comparison between FFT obtained from time-domain samples (on
top) and FFT obtained with our FPGA implementation (bottom)

95 96 97 98 99 100 101 102 103 104 105

f[Mhz]

-120

-110

-100

-90

-80

-70

-60

-50

|Y
|2

/N
2
 [d

b]

Comparison FPGA vs Matlab

Matlab

FPGA

min level FFT

noise variance

Figure 7.5: Comparison between FFT on Matlab, FFT obtained FPGA
implementation and WBX noise variance level

80

7.3 – System test, characterization and performances

7.6 shows a screenshot of the system output. The signal generator in this case has
been settled to generate two different standard signals: Bluetooth and GSM.
The Bluetooth signal is transmitted at 402MHz and the GSM one roughly 50MHz
apart. The USRP is retuning over a total bandwidth of 60 MHz. It can be seen
that both signals have been detected. For this test the adaptive architecture and
following system parameters have been used:

• fs = 10MHz;

• fstart = 400MHz

• M = 8 (number of sub band bins);

• n = 6 (number of FFTs scanned starting from fstart);

• λ∗ = 8;

The noise power to evaluate the λ∗ value has been evaluated in the time domain at
the RF-frequency of 400MHz.

Figure 7.6: Spectrum scanning system output, (top) FFT result and (bottom)
detection result

81

7 – Results

A second test performed for both architecture is sending one Bluetooth signal
and a multi-carrier signal (21 carriers) over a bandwidth of 100MHz. The Figure
7.7 shows the result of the test. The following parameters has been used for the
experiment:

• fs = 10MHz;

• fstart = 400MHz

• M = 8 (number of sub band bins);

• n = 10 (number of FFTs scanned starting from fstart);

• λ∗ = 8;

As can be noticed from Figure 7.7 both the Bluetooth and the single carriers
have been detected.

400 410 420 430 440 450 460 470 480 490

Frequency[MHz]

0

1

2

3

|Y
|2

[d
B

]

400 410 420 430 440 450 460 470 480 490

Frequency[MHz]

0

1

D
e
te

c
ti
o
n

Frequency scan Bluethoot and Multicarrier

Figure 7.7: Spectrum scanning system output with Bluetooth and Multicarrier (21
carriers) signals, (top) FFT result ([dB]) and (bottom) detection result

82

7.3 – System test, characterization and performances

7.3.3 Characterization of Energy Detection System

The spectrum sensing system performances are defined by two different probabilities:

• Probability of Detection: the probability that a signal, which is occupying a
certain band, is correctly detected;

• Probability of False Alarm: the probability that a signal is detected inside a
channel even if the signal is not present;

The two probabilities have been described in the Section 2.2 regarding the stud-
ies on the threshold methods. Some experiments have been performed on the two
types of architectures to evaluate these kind of probabilities and characterize the
system.

Probability of Detection

The RF signal generator has been settled to generate different standard signals
changing the transmission peak power. From the USRP side the acquisition of
samples and the evaluation of the result is repeated 100 times for each different
peak power.
To have points enough to create a good Pd characteristic, the transmitting peak
power step has been settled to 1dBm.
Both the fixed and adaptive architectures have been tested in this way and the
standard signals analysed are:

• Bluetooth [BW = 1MHz];

• GSM [BW = 270kHz];

• NADC [BW = 24kHz];

• TETRA [BW = 18kHz];

• WCDMA [BW = 3.84MHz];

The signals have been transmitted at a central frequency equal to 402MHz because
the frequencies around 400MHz is one particular case of study asked by BIPT, used
for PMR transmissions.The sample frequency is settled to 10MHz and the receiving
gain kept to 0dB.
To compare the threshold selection the experiment has been performed changing the
number of sub-band bins and the threshold value. Some results of these experiments
are shown in the following figures:

83

7 – Results

• Fixed Threshold: Figure 7.8, Figure 7.9;

• Adaptive Threshold: Figure 7.10, Figure 7.11.

Other similar Figures representing other cases have been included in the Appendix
A.

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold [th = 11,wsz=2]

Bluetooth [BW = 1Mhz]
GSM [BW = 270khz]
NADC[BW = 24khz]
TETRA[BW = 18khz]
WCDMA[BW = 3.84Mhz]

Figure 7.8: Probability of Detection (M = 2,λ = 11) - Fixed Threshold
Architecture

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold Bluetooth Signal

th=14 wsz=8
th=14 wsz=2
th=11 wsz=2

Figure 7.9: Comparison between Probabilities of Detection changing M and λ for
a Bluetooth standard signal

The Figures 7.8 and 7.10 represents the identical settling for the fixed and the
adaptive threshold cases. The overall peak power, where the two architectures show
a Pd equal to 1, is around −70dBm. Both architecture detect signals more or less
with the same peak power. One case which differentiates the two architectures is the

84

7.3 – System test, characterization and performances

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold [th = 2,wsz=2]

Bluetooth [BW = 1Mhz]
GSM [BW = 270khz]
NADC[BW = 24khz]
TETRA[BW = 18khz]
WCDMA[BW = 3.84Mhz]

Figure 7.10: Probabilities of Detection (M = 2,λ = 2) - Fixed Threshold
Architecture

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold Bluetooth

th=8 wsz=8

th=8 wsz=2

th=2 wsz=2

Figure 7.11: Comparison between Probabilities of Detection changing M and λ for
a Bluetooth standard signal with Adaptive Threshold Architecture

Pd for the WCDMA signal. The adaptive threshold in this configuration can sense
this standard signal up to −75dBm respect around −70dBm of the fixed thresh-
old architecture. Figures 7.12 and 7.13 represent the comparison between the fixed
and adaptive threshold with the same number of sub-band bins for the Bluetooth
signal. When M = 2 the adaptive threshold architecture detects signal with less
transmission peak power but in case of M = 8 the fixed threshold architecture has
better performances than the adaptive one. Comparing also with the other standard
signals the result is very similar. In particular for signal with lower bandwidth the

85

7 – Results

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed vs Adaptive Threshold Bluethoot

Fixed (th=11 wsz=2)
Adaptive (th=2 wsz=2)

Figure 7.12: Comparison between Probabilities of Detection of Fixed vs Adaptive
Threshold for a Bluetooth standard signal (M = 2)

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed vs Adaptive Threshold Bluethoot

Fixed (th=14 wsz=8)
Adaptive (th=8 wsz=8)

Figure 7.13: Comparison between Probabilities of Detection of Fixed vs Adaptive
Threshold for a Bluetooth standard signal (M = 8)

difference is only of few dB.

Figures 7.9 and 7.11 show the Pd behaviour for a Bluehooth standard signal
changing the threshold and the number of sub-band bins.
For the fixed threshold case can be noticed that if the number of sub-band bins is
kept constant and the threshold is lowered the Pd becomes less than 1 at lower peak

86

7.3 – System test, characterization and performances

power for a lower threshold. Increasing the threshold the characteristic is shifted to
the right toward higher peak power.
On the other hand keeping constant the threshold and increasing the number of
sub-band bins the graph is shifted toward left. This is obvious because the number
of bins taken to compare with the threshold is greater.

For the adaptive threshold case a similar scenario happens. Keeping constant
the number of sub-band bins and increasing the base threshold value the maximum
peak power with Pd = 1 is lower, the characteristic is shifted toward right. Also
for the adaptive threshold when the sub-band width increases also the performances
will be increased.

The same comparison has been performed also with the other standard signals,
the graphs of results obtained have been put on the Appendix A.

Probability of false alarm

The probability of false alarm has been evaluated using the received samples for
the probability of detection. Based on the definition of Pf , the detection of others
signals outside the bandwidth of the signal generated has been searched. Thanks to
the minimum level that can be sensed by the FFT, the probability of false alarm is
equal to zero for both the architectures.
One consideration, which has to be underlined, is that the Pf neglects the bin of the
DC component and some other bins around it. This because is known that there
is some noise induced by the WBX daughterboard and so there is the possibility
to have some detections caused by these values. In particular when the gain of the
receiving chain increases also these values become higher.

Gain vs Threshold

One case of study on the system performances is the gain versus the threshold. As
mentioned before for the Pf , increasing the gain also the noise and the dc component
change their values. This experiment had the aim to understand if was needed to
increase the threshold value or adapt it based on the gain value.
For this test the signal vector generator was not used, and the single USRP without
any antenna connected to the input port has been used. Some different frequencies
among the WBX receiving frequency range are used and the gain is changed from
0 up to 30 dB.
The result of this experiment is that for both the architectures is not necessary
to add some terms linked to the gain value. But in case of the adaptive threshold,
increasing the gain more than 25dB, the DC elimination module present on the chain

87

7 – Results

is not enough. This module eliminates only three bins around the DC component
and the bins with a value different from zero are more than three. Overall for the
adaptive threshold is suggested to use a gain less than 25dB.

7.3.4 Spectrum Scan Speed

The Software part of the system has been tested scanning the whole bandwidth,
allowed for the daughterboard, and finding the best span time which can be set-
tled between two retuning commands. To perform this test the antenna has been
connected to the device and it has been used a gain equal to 15dB. The sample
frequency instead has been changed to check the correct behaviour of the system.
Reducing fs the span time has to be increased in order to respect the latency time of
the custom module implemented on the FPGA. These time values has been reported
in the Table 7.2, Subsection 7.2.3.
If the fs is greater than 1MHz the minimum values of span time which can be used
are:

• Fixed Threshold System: 2ms;

• Adaptive Threshold System: 2.5ms.

If the sample frequency is less or equal to 1MHz the span time has to be increased.
These results depend also on the Host CPU performance, in this case a laptop with
4Gb of RAM and a Linux OS (Ubuntu 14.04 LTS) has been used. Using these
minimum values to scan the whole available WBX range of frequencies (50MHz up
to 2200MHz), with a fs = 10MHz are needed about 535ms for one cycle. The
detection data is refreshed every 535ms.

7.4 FM broadcasting scan experiment

All the tests explained in the previous sections has been performed without connect
an antenna to the USRP.
A practical experiment has been conducted on the FM broadcasting in Brussels.
Using a database of all radio stations available in Brussels, the broadcastings de-
tected have been compared with the transmission position.

The FM broadcast band usually is from 87.5 to 108.0 MHz and it is part of the
VHF range of the radio frequency spectrum. Normally the FM frequency carriers
are spaced of 200 kHz (0.2 MHz); so each channel is 200kHz wide and can pass
audio and subcarrier frequencies up to 100 kHz[13].

The System parameters have been settled as following:

88

7.4 – FM broadcasting scan experiment

• fs = 1MHz;

• fstart = 89.5MHz;

• M = 8 (number of sub band bins);

• n = 9 (number of FFTs scanned starting from fstart);

• λ∗ = 8;

• gain = 15dB;

Setting the fs to 1MHz the frequency resolution f0 has been increased respect
the previous experiments where the fs was settled to 10MHz.
The radio stations detected are shown on the Figure 7.14 and the respective trans-
mission position is shown in the Figure7.15.

89
89.5 90

90.5 91
91.5 92

92.5 93
93.5 94

94.5 95
95.5 96

96.5 97
97.5 98

98.5 99
99.5 100

100.5 101
101.5 102

102.5 103
103.5 104

104.5 105
105.5 106

106.5 107
107.5 108

108.5 109

[MHz]

0

1

2

3
SQM normalized [db]

89
89.5 90

90.5 91
91.5 92

92.5 93
93.5 94

94.5 95
95.5 96

96.5 97
97.5 98

98.5 99
99.5 100

100.5 101
101.5 102

102.5 103
103.5 104

104.5 105
105.5 106

106.5 107
107.5 108

108.5 109

[MHz]

0

0.2

0.4

0.6

0.8

1

Detection

V
R

T
 K

LA
R

A

R
T

B
F

 M
U

S
IQ

 3

R
T

B
F

 C
LA

S
S

IC
 2

1

V
R

T
 R

A
D

IO
 2

R
A

D
IO

 K
IF

N
O

S
T

A
LG

IE

R
T

B
F

 V
IV

A
C

IT
E

 B
R

U
X

E
LL

E
S

N
O

S
T

A
LG

IE

V
R

T
 S

T
U

D
IO

 B
R

U
S

S
E

L

D
H

 R
A

D
IO

R
A

D
IO

 C
O

N
T

A
C

T

B
E

L
R

T
L

Figure 7.14: Spectrum scanning system output, (top) FM spectrum result and
(bottom) detection result

Twelve radio stations have been detected from the BEAMS department at ULB
in Brussels. From the Figure 7.14 can be noticed that in some parts of the spectrum
there are some bins that are not detected, this is due by the fact there are few bins
with values different from zero and moreover the antenna used to receive the FM
radio is not designed for this range of frequencies. Only when the power transmis-
sion of the station is more strength the broadcast signal can be detected.

89

7 – Results

VRT KLARA
VRT RADIO 2
VRT STUDIO

BRUSSEL

NOSTALGIE
RADIO CONTACT

NOSTALGIE

DH RADIO

RADIO KIF

BEL RTL

RTBF MUSIQ'3
RTBF CLASSIC 21
RTBF VIVACITE

BRUXELLES

Figure 7.15: Map of FM stations positions detected respect the University position

Obviously the data plotted regards only samples of one entire spectrum scan. The
test is performed with a continuous scan of the same piece of spectrum, the system
has been left in running mode for several minutes and only some few software lags
have been encountered, but the system continued work correctly.

90

Chapter 8

Conclusion

The thesis presented shows an opportunistic implementation of a spectrum scanner
on a software define radio platform. By exploiting the USRP N210 features a mixed
FPGA/software implementation has been designed, where the whole detection part
is performed on the FPGA in order to alleviate the host CPU workload.
The system software part uses and takes advantage of the most advanced features of
the USRP, making it possible to create a spectrum scanner at cost cheaper than tra-
ditional spectrum analyzers. Although some reduction of performances are present.
The overall features of the implementation presented are:

• configurable total scanning bandwidth;

• a configurable USRP bandwidth (up to 10MHz);

• a configurable sub-bandwidth;

• an automatic or manual (fixed) threshold mechanism.

The details of the system implementation performances and results have been ex-
plained in the Chapter 7, following a brief summary of most important results is
given.
The automatic scanner system is able to re-tune its central frequency each 2.5ms
which means with about 500ms the whole bandwidth of the WBX daughter board
(50MHz up to 2200MHz) can be scanned.
The overall minimum peak power of transmission which can be sensed is of -70dBm
for different type of signals with a number of sub-band bins less than 8. The sample
frequency of the USRP can be changed with also the threshold and M in order to
refine the signal detection.
Some future improvements on the FPGA side could be performed, such as a mod-
ule for the noise variance estimation in order to evaluate the base threshold value
directly. Moreover, a complete FPGA image with both threshold mechanisms could

91

8 – Conclusion

be created giving the possibility to select by software the threshold mechanism.
Future related work will be to integrate a GNSS chip on the USRP device, in order
to retrieve the GNSS data and compare, by software, the detection result with a
regulator provided database.
This spectrum scanner implementation was published as a ”Temporary Document”
in the COST IRACON (Inclusive Radio Communication Networks for 5G and be-
yond) Action and was presented in the 5th Technical meeting of the COST IRACON
Action in September 2017 at Graz (Austria).

92

Appendix A

System Characterization

A.1 Probabilities of Detection Fixed Threshold

Architecture

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold [th = 14,wsz=2]

Bluetooth [BW = 1Mhz]
GSM [BW = 270khz]
NADC[BW = 24khz]
TETRA[BW = 18khz]
WCDMA[BW = 3.84Mhz]

Figure A.1: Probabilities of Detection (M = 2,λ = 14) - Fixed Threshold
Architecture

93

A – System Characterization

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold [th = 14,wsz=2]

Bluetooth [BW = 1Mhz]
GSM [BW = 270khz]
NADC[BW = 24khz]
TETRA[BW = 18khz]
WCDMA[BW = 3.84Mhz]

Figure A.2: Probabilities of Detection (M = 8,λ = 14) - Fixed Threshold
Architecture

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold GSM

th=14 wsz=8

th=14 wsz=2

th=11 wsz=2

Figure A.3: Comparison between Probabilities of Detection changing M and λ for
a GSM standard signal

94

A.1 – Probabilities of Detection Fixed Threshold Architecture

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold NADC

th=14 wsz=8

th=14 wsz=2

th=11 wsz=2

Figure A.4: Comparison between Probabilities of Detection changing M and λ for
a NADC standard signal

95

A – System Characterization

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold TETRA

th=14 wsz=8
th=14 wsz=2
th=11 wsz=2

Figure A.5: Comparison between Probabilities of Detection changing M and λ for
a TETRA standard signal

96

A.1 – Probabilities of Detection Fixed Threshold Architecture

-80 -75 -70 -65 -60 -55 -50 -45 -40

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Fixed Threshold WCDMA

th=14 wsz=8

th=14 wsz=2

th=11 wsz=2

Figure A.6: Comparison between Probabilities of Detection changing M and λ for
a WCDMA standard signal

97

A – System Characterization

A.2 Probabilities of Detection Adaptive Thresh-

old Architecture

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold [th =8,wsz=8]

Bluetooth [BW = 1Mhz]

GSM [BW = 270khz]

NADC[BW = 24khz]

TETRA[BW = 18khz]

WCDMA[BW = 3.84Mhz]

Figure A.7: Probabilities of Detection (M = 8,λ = 8) - Adaptive Threshold
Architecture

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold GSM

th=8 wsz=8
th=8 wsz=2
th=2 wsz=2

Figure A.8: Comparison between Probabilities of Detection changing M and λ for
a GSM standard signal with Adaptive Threshold Architecture

98

A.2 – Probabilities of Detection Adaptive Threshold Architecture

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold NADC

th=8 wsz=8
th=8 wsz=2
th=2 wsz=2

Figure A.9: Comparison between Probabilities of Detection changing M and λ for
a NADC standard signal with Adaptive Threshold Architecture

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold TETRA

th=8 wsz=8
th=8 wsz=2
th=2 wsz=2

Figure A.10: Comparison between Probabilities of Detection changing M and λ for
a TETRA standard signal with Adaptive Threshold Architecture

99

A – System Characterization

-80 -75 -70 -65 -60 -55 -50

Tx Peak Power[dbm]

0

0.2

0.4

0.6

0.8

1

P
d

Probability of Detection Adaptive Threshold WCDMA

th=8 wsz=8

th=2 wsz=2

Figure A.11: Comparison between Probabilities of Detection changing M and λ for
a WCDMA standard signal with Adaptive Threshold Architecture

100

Bibliography

[1] Ettus Research, “USRP n200/n210 networked series” 2012. [On-
line]: https://www.ettus.com/content/files/07495{ }Ettus{ }N200-210{ }
DS{ }Flyer{ }HR{ }1.pdf

[2] J.-o. Jeong, “Hybrid FPGA and GPP Implementation of IEEE 802.15.4 Phys-
ical Layer” in Master thesis, p. 214, 2012.

[3] S. Atapattu, C. Tellambura, H. Jiang, “Energy Detection for Spectrum
Sensing in Cognitive Radio” in Energy Detection for Spectrum Sensing in
Cognitive Radio, 1st ed. Springer, 2014, capitolo 2, pp. 11–27. [Online]:
http://link.springer.com/10.1007/978-1-4939-0494-5

[4] Kwang-Cheng Chen, P. Ramjee, Cognitive Radio Networks, 2009.

[5] H. Urkowitz, “Energy detection of unknown deterministic signal-
s” in Proceedings of the IEEE, v. 55, n. 4, pp. 523–531, 1967.
[Online]: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1447503{%}
5Cnhttp://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=1447503

[6] X. Ling, B. Wu, H. Wen, P.-h. Ho, Z. Bao, L. Pan, in “Adaptive Threshold
Control for Energy Detection Based Spectrum Sensing in Cognitive Radios”
v. 1, n. 5, pp. 448–451, 2012.

[7] N. Wang, Y. Gao, X. Zhang, “Adaptive spectrum sensing algorithm under
different primary user utilizations” in IEEE Communications Letters, v. 17,
n. 9, pp. 1838–1841, 2013.

[8] N. Wang, Y. Gao, “Optimal Threshold of Welch’s Periodogram for Sensing
OFDM Signals at Low SNR Levels” in Wireless Conference (EW), Proceedings
of the 2013 19th European, pp. 1–5, 2013.

[9] S. Xie, L. Shen, J. Liu, “Optimal threshold of energy detection for spectrum
sensing in cognitive radio” in 2009 International Conference on Wireless
Communications & Signal Processing, n. 2007, pp. 1–5, 2009. [Online]:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5371719

[10] M. Nasserbakht, in “Efficient Hardware Implementations” pp. 259–273, 2000.

[11] Ettus Research, “USRP Hardware Driver and USRP Manual” 2015. [Online]:
http://files.ettus.com/manual/index.html

[12] S. Sequeira, R. R. Mahajan, P. Spasojević, “On the noise power estimation

101

https://www.ettus.com/content/files/07495{_}Ettus{_}N200-210{_}DS{_}Flyer{_}HR{_}1.pdf
https://www.ettus.com/content/files/07495{_}Ettus{_}N200-210{_}DS{_}Flyer{_}HR{_}1.pdf
http://link.springer.com/10.1007/978-1-4939-0494-5
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1447503{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1447503
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1447503{%}5Cnhttp://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=1447503
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5371719
http://files.ettus.com/manual/index.html

Bibliography

in the presence of the signal for energy-based sensing” in 35th IEEE Sarnoff
Symposium, SARNOFF 2012 - Conference Proceedings, pp. 1–5, 2012.

[13] Wikimedia Foundation, in “WikipediA The Free Encyclopedia.” [Online]:
https://www.wikipedia.org/

[14] N. Wang, “Threshold Setting Algorithms for Spectrum Sensing in Cognitive
Radio Networks by” Tesi di dottorato, Queen Mry University of London, 2014.

[15] Xilinx, “LogiCORE IP Fast Fourier Transform v7.1” Rapporto in-
terno, 2011. [Online]: https://www.xilinx.com/support/documentation/ip{ }
documentation/xfft{ }ds260.pdf

[16] Ettus Research, “UHD - General Application Notes.” [Online]: https:
//files.ettus.com/manual/page{ }general.html

[17] I. Galal, M. E. A. Ibrahim, H. E. Ahmed, “Exploring Frequency Tuning Policies
for USRP-N210 SDR Platform and GNU Radio” in 2013 Conference on Design
and Architectures for Signal and Image Processing (DASIP), 2013.

[18] GNU Radio Foundation, “GNURadio the free & open-source software radio
eco-system.” [Online]: https://www.gnuradio.org/

[19] Ettus Research, “Ettus Research USRP FPGA HDL Source” 2015. [Online]:
https://github.com/EttusResearch/fpga

[20] Rohde & Schwarz, “R&S SMATE200A Vector Signal Generator.”
[Online]: https://www.rohde-schwarz.com/it/prodotto/smate200a-opzioni{ }
63490-7556.html

102

https://www.wikipedia.org/
https://www.xilinx.com/support/documentation/ip{_}documentation/xfft{_}ds260.pdf
https://www.xilinx.com/support/documentation/ip{_}documentation/xfft{_}ds260.pdf
https://files.ettus.com/manual/page{_}general.html
https://files.ettus.com/manual/page{_}general.html
https://www.gnuradio.org/
https://github.com/EttusResearch/fpga
https://www.rohde-schwarz.com/it/prodotto/smate200a-opzioni{_}63490-7556.html
https://www.rohde-schwarz.com/it/prodotto/smate200a-opzioni{_}63490-7556.html

	Acknowledgments
	Summary
	Introduction
	Motivation
	Objective

	Theoretical background
	Spectrum sensing
	Energy detection
	Matched filter
	Cyclostationary detection
	Walvelet detection
	Summary Spectrum Sensing Techniques

	Energy Detection: Threshold Study
	Fast Fourier Transform review and architectures
	FFT Algorithms
	Implementation Architectures

	Software Defined Radio: USRP
	Introduction
	Software define radio
	USRP - Universal Software Radio Peripheral
	Hardware
	Data Flow in USRP system
	FPGA resources
	Host Software
	Practical Aspects

	Automatic Spectrum Scanning System
	Introduction
	System Design
	FPGA
	Software

	Spectrum Sensing Algorithm
	Fixed Threshold
	Adaptive Threshold

	Hardware implementation of Energy Detection
	Introduction
	Fast Fourier Transform Module
	WR RAM Controller
	FFT Controller

	Square Magnitude Module
	ED Module Fixed Threshold
	Control Unit Detection
	Control Unit Packing

	ED Module Adaptive Threshold
	DC Elimination Module
	D factor Module
	Energy Detection Unit

	Data Synchronizer

	Software Scanning Technique and Implementation
	Introduction
	Tuning Method and Policies
	Software Enviroments
	Software Program

	Results
	Introduction
	Hardware simulation and synthesised resources comparison
	Simulation
	Synthesised resources comparison
	Timing Performances

	System test, characterization and performances
	FFT Tests
	Energy Detection system Tests
	Characterization of Energy Detection System
	Spectrum Scan Speed

	FM broadcasting scan experiment

	Conclusion
	System Characterization
	Probabilities of Detection Fixed Threshold Architecture
	Probabilities of Detection Adaptive Threshold Architecture

	Bibliography

