How compilers affect dependency resolution in Spack
Package Management Devroom at FOSDEM 2018

Brussels, Belgium Todd Gamblin
Center for Applied Scientific Computing, LLNL
Feburary 3, 2018 YW @tgamblin

LLNL-PRES-745770 ‘ ’ M Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory : 1
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory

LLNL is a multidisciplinary national security laboratory }

N P
" N K
f 5e .)
e . a -l

= Establishedin1952 = 1square mile, 684 facilities
= Approximately 6,000 employees = Annual federal budget: ~ $1.42B

Lawrence Livermore National Laboratory O github.com/spack ' @spackpm 2 NOYSE 2

LLNL-PRES-745770 ———

High-Performance Computing (HPC) is in the Lab’s DNA

W Lovrence Livermore National Latoratory O github.com/spack %W @spackpm 3 NIYSE 3

Spack is a general purpose, from-source package manager

= |nspired somewhat by homebrew and nix

= Targets HPC and scientific computing

Community is growing!

= Goals:

Facilitate experimenting with performance options

Flexibility. Make these things easy:
* Build packages with many different:

LOC over time in packages by org

@Spack

https://spack.io

50000 -

ANL mmm Ulowa EmE Max-Planck-Inst
- compilers/versions/build options N e Perimeterinst e
+ Change compilers and flags in builds (keep provenance) ***] ePrL OpenFoAM m=z0n
. . N N . . W unknown irchhoffinstitute m Kre
* Swap implementations of ABl-incompatible libraries 20000 | == FAU NASA-GISS Kitware
- MPI, BLAS, LAPACK, others like jpeg/jpeg-turbo, etc. f Genentech W= SJTU = Other
— Build software stacks for scientific simulation and 20000 {
analysis ooos.
— Run on laptops, Linux clusters, and some of the
largest supercomputers in the world " o o -
Vv Vv Vv Vv
Lawrence Livermore National Laboratory 0 github.com/spack %" @spackpm NISE

Spec CLI syntax makes it easy to install different ways

spack install
spack install
spack install
spack install
spack install
spack install

©“ A B A A

mpileaks unconstrained
mpileaks@3.3 @ custom version
mpileaks@3.3 %gcc@4.7.3 % custom compiler
mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
mpileaks@3.3 cflags="-03 —g3" setting compiler flags

mpileaks@3.3 “mpich@3.2 %gcc@4.9.3 ~ dependency constraints

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— A (caret) adds constraints on dependencies

Lawrence Livermore National Laboratory
LLNL-PRES-745770

O github.com/spack %" @spackpm

Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', "abfe@b7faabe7aze’)
version('8.1.2", 'bf@3b33375afabof’)
version('8.1.1", 'd1a@4e995b7aa7@9’)

depends_on("cmake", type="build")

depends_on("libelf", type="1link")
depends_on("libdwarf", type="1ink™")
depends_on("boost @1.42: +multithreaded™)

def install(self, spec, prefix):
with working_dir('spack-build', create=True):
cmake(' -DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=° + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
make()
make("install™)

Simple Python DSL
— Packages are classes (ala homebrew)
— Directives use the same spec syntax

Metadata at the class level

Versions

Dependencies

<« === Patches, variants, resources, conflicts, etc.
— (not shown)

== |nstall logic in instance methods

Lawrence Livermore National Laboratory
LLNL-PRES-745770

O github.com/spack

4’ @spackpm NS4

Depend on interfaces (not implementations)

with virtual dependencies

mp1i is a virtual dependency

Install the same package built with two
different MPI implementations:

mpileaks

libdwarf
B __w

1lpath
cattPath i—p dyninst __p| libelf

$ spack install mpileaks “mvapich

Virtual dependencies can be versioned:

$ spack install mpileaks “openmpi@l.4:

Virtual deps are replaced with a valid

implementation at resolution time.
— If the user didn’t pick something and there
are multiple options, Spack picks.

class Mpileaks(Package):
depends_on("mpi@2:™") dependent
class Mvapich(Package): provider

provides("mpi@l1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package): .
provides("mpi@:2.2" when="@1.6.5:") provider

Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm _NA‘&%

LLNL-PRES-745770

Spack builds packages with compiler wrappers

; Spack = Similar to homebrew “shims”

' Process - = Forked build process isolates environment for each build

: Use compiler wrappers to add include, lib, and RPATH flags
E = RPATHSs ensure that the correct dependencies are found

automatically at runtime.

Install dep1 Install dep2 Install package

Build

Set up environment
Process

J .
Jopt/ic-15.1/bin/icc , Compiler wrappers
/opt/ic-15.1/bin/icpc | (spack-cc, spack-c++, spack-f77, spack-f90)
/opt/ic-15.1/bin/ifort
/opt/ic-15.1/bin/ifort

CC
CXX
F77
FC

spack/env/intel/icc SPACK_CC
spack/env/intel/icpc SPACK_CXX
spack/env/intel/ifort SPACK_F77
spack/env/intel/ifort SPACK_FC

-L /depl-prefix/lib
-W1,-rpath=/depl-prefix/lib

PATH = spack/env:$PATH
CMAKE_PREFIX_PATH
LIBRARY_PATH

1
1
1
1
1
-1 /depl-prefix/include :
1
1
1
1
1

install(Q)

1
1
1
1
1
1
1
1
1
1
1
: PKG_CONFIG_PATH
1
1
1
1
1
1
1
1
1
1

Lawrence Livermore National Laboratory O github.com/spack ’ @spackpm NIYSE s

LLNL-PRES-745770

Hashes handle combinatorial software complexity.

Dependency DAG = Each unique dependency graph is a unique
I configuration.
mpileaks —a 7 libdwarf]]) _) _
callpath Ll e [—— M ar | ® Each configuration installed in a unique directory.
i — Configurations of the same package can coexist.

Installation Layout

spack/opt/ = Hash of directed acyclic graph (DAG) metadata is
linux—x82_g4£ appended to each prefix
gcc_mﬁiieéks_l_1_0f54bf34cadk/ — Note: we hash the metadata, not the artifact.
intel-14.1/
hdf5-1.8.15-1kf1l4aq3nqiz/ . : :
bgq/ sasnate = |nstalled packages automatically find dependencies
xl-12.1/ — Spack embeds RPATHSs in binaries.
hdf5-1-8.16-fgb3al5abrwx/
— No need to set LD_LIBRARY_PATH

— Things work the way you built them

‘ Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm _NA‘&%

LLNL-PRES-745770 —— —

Spack’s dependency model centers around “concretization”

User input: abstract spec

mpileaks ~callpath@l.0+debug ~libelf@0.8.11

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpileaks

\ \

callpath@l.o

callpath@l.0
%gcc@a4.7.3+debug
=linux-ppc64

+debug

L\

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

\\\;::j::>> mpi

dyninst Concretize

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

\

libdwarf

/

\

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

Concrete spec is fully constrained 4
and can be built.

Solves for more than package/version,
but similar to other resolvers

Dependencies need to be a DAG
Different dependency types:

— Build: tools run at build time

— Link: things linked with

— Run: things invoked at runtime

Only one instance of any dependency
can be in the concrete DAG.

Nodes can have different compilers

Lawrence Livermore National Laboratory
LLNL-PRES-745770

0 github.com/spack

Y @spackpm

NYSE 10

Why one configuration of a package per DAG?

Languages like Javascript have support for multi-versions in a DAG
— (most?) native linkers do not

= You can link an executable with libraries that depend on two different
versions of, say, libstdc++

= You don’t want to do that:
— First one in which a function is called is loaded (this is a nasty race case)
— If ABl is different, you'll get a fatal error when the second function version is called

= |n general, we can’t have two versions of one library
in the same process space

‘ Lawrence Livermore National Laboratory O github.com/spack ’ @Spackpm _NA‘&% 11

LLNL-PRES-745770 —— —

Why aren’t compilers proper dependencies?

They should be, but...

1.

2.

We want to mix compilers in one DAG

— Can’t do this with our restriction
— Dependency model flattens compilers

We needed to auto-detect vendor compilers

— Often required for fastest builds

— Needed an expedient way to use what’s available

$ spack compilers
==> Available compilers

== gCC === mmm e

gcc@4.9.3 gcc@7.2.0

-- clang -------====—-m e -

intel@17.0.1

compilers.yaml

compilers:

- compiler:
modules: []
operating_system: ubuntul4
paths:

cc: /usr/bin/gcc/4.9.3/gcc

cxx: /usr/bin/gcc/4.9.3/g++

f77: /usr/bin/gcc/4.9.3/gfortran

fc: /usr/bin/gcc/4.9.3/gfortran
spec: gcc@4.9.3

- compiler:
modules: []
operating_system: ubuntul4
paths:

cc: /opt/intel/17.0.1/bin/icc

cxx: /opt/intel/17.0.1/bin/icpc

f77: /opt/intel/17.0.1/bin/ifort

fc: /opt/intel/17.0.1/bin/ifort
spec: intel@17.0.1

Auto-generated by searching environment

Lawrence Livermore National Laboratory
LLNL-PRES-745770

O github.com/spack

% @spackpm NYSA 12

Why do HPC people care about compilers so much?

1. HPC people want to use fancy compilers for high performance

2. On many machines, this requires cross-compiling for the compute nodes
— Xeon Phi, Blue Gene, etc.

3. Some packages require compiler features, e.g.:
— OpenMP versions
— Language levels/verisons (C, C++, and Fortran have this)
— CUDA
— etc.

All of these pose some challenges for the dependency model

‘ Lawrence Livermore National Laboratory O github.com/spack , @spackpm ML&J",_ 13

LLNL-PRES-745770

Fancy vendor compilers

Advantages:

= Intel compiler gets better performance and vectorization than gcc
= Similar for Cray, PGI, XL compilers

Issues:

= Fancy compilers tend to be hard to work with
— At least most of the CLI options are consistent these days

= Most OSS projects don’t test with them, so builds are fraught with peril
— Things like CMake (and its dependencies) don’t always build with XL
— Typically no reason to build these with anything but the system compiler
— No performance benefit for vectorizing build tools

‘ Lawrence Livermore National Laboratory O github.com/spack y @S packpm _.NA‘S_?E 14

LLNL-PRES-745770 —— —

How do we handle this?

We want to: spack install pkgl %intel
— Build build dependencies with the "easy" compilers
— Build rest of DAG (the link/run dependencies) with

the fancy compiler

Works well for porting most scientific codes
— Results in consistent compilers within processes 2

. . B L
What we actually do is run the concretizer

separately for the pure build dependencies and \3)

the link dependencies
— If something is shared between build and link, go
with the link version.

Easy compiler

O Fancy compiler
B: build L:link R:run

This is soon to be merged in.

Lawrence Livermore National Laboratory O github.com/spack , @s packpm ML&-E 15

LLNL-PRES-745770

Cross-compilation

= Why cross-compile?
— Your machine has Xeon Phi processors or maybe it’s a BlueGene/Q
— You need to run a cross-compiler to build for the compute nodes

Submit jobs

Login/build nodes

808«

A— slurm

workload manager

Run jobs

‘ User login Compute nodes
g PowerPC A2 (incompatible ISA)

Incompatible OS/runtime

Lawrence Livermore National Laboratory O github.com/SpaCk ’ @spackpm _I_V_AL-.&_;%_ 16

LLNL-PRES-745770

Why not build natively on the compute nodes?

= In many cases, building on the compute nodes is very slow

— There are 72 Atom cores on a Knights Landing (Xeon Phi)
— Eachisonly 1.4 Ghz
— Typically only talk to network filesystem (diskless nodes)

= Many tools (like compilers) are not ported to the compute node

— Compute node uses a stripped down OS (e.g., BG/Q)
— Maybe you don’t have that many licenses for your fancy compiler!

= Generally you want to build on the machines with the big cores
— Fast Xeon front-end nodes
— Power8/Power9 nodes

‘ Lawrence Livermore National Laboratory O github.com/spack ’ @Spackpm _NA‘&% 17

LLNL-PRES-745770 —— —

How do build dependencies work with cross-compiles?

= Recall some of the dependency types:
— Build: tools run at build time.
— Link: things the package links with
— Run: things the package invokes at runtime.

= Well, now you have an issue:
— you need your build dependencies built for a the architecture where you’re building

— Sometimes you can get away with cheating (build everything for the compute arch)
» Depends how close the compute OS and ISA are to the build nodes

= We can use our build dependency trick here, but it’s a bit more complex

‘ Lawrence Livermore National Laboratory O github.com/spack , @spackpm ML&-E 18

LLNL-PRES-745770

Cross compiling and dependencies

spack install pkgl target=knl

Can’t be a

= Suppose you have a dependency that is both a build dep

build dependency AND a link dependency.

= Build dependency trick definitely helps /\2/\
B L
= Could previously share the fancy compiler version £ P

— But now you can’t b/c the compute version won’t [3)
run in the build environment ./
Front end (XeOn) Can’t be a
run dep of
O Compute (KNL) a build dep

B: build L:link R:run
W Lovrence Livermore Nationai Laboratory O github.com/spack Y @spackpm NISE 19

Cross compiling and DAG splitting

= We can solve this problem by building two spack install pkgl target=knl

versions of the conflicting libraries
— Need to relax our DAG constraint

= |t’s ok to split these because the build and run

environments are separate process spaces | |
— not actually going to ever cause a race in ld.so B L

= Now there are 2 versions of 5 and 8, though (3)
— We'd like to minimize redundant versions ./

Front end (Xeon)

() Compute (KNL)
B: build L:link R:run

‘ Lawrence Livermore National Laboratory O github.com/spack , @spackpm _I_V..A'__.&fé 20

LLNL-PRES-745770

Interesting cross-architecture constraints

Python doesn’t really understand cross-compilation
— you might not think it'd need to

Setuptools is a build tool that adds code to the installed package
— generated code is python version-dependent.
— now you need front-end python and back-end and compute python to be
the same version
— this constraint spans two parts of your DAG!

Your build env is not entirely separate from your run env
— Can’tjust do independent resolution for build dependencies!

This is one reason we’re moving to SAT for dependency resolution
« Easier and more general to express constraints like this

native-pkg

setuptools

7’ Must be same

e .
version!
»

python’

Lawrence Livermore National Laboratory O github,com/spack , @spackpm NOYSE 2

LLNL-PRES-745770

Last issue: Compiler dependencies

Compilers are still a special case in Spack
— Represented as attributes of nodes, not as dependencies

Two issues:
1. Compiler can’t provide virtual dependencies like packages
2. Compilers can’t easily have their own dependencies

We'd like packages to be able to depend on C++11, C++17, OpenMP 4.5, etc.
— Requires compiler to provide C++ and OpenMP as virtual deps

Some compilers actually depend on other compilers!

— Intel compilers rely on gcc to provide libstdc++

— Verison ranges need to match for this to work properly!

— Coordinating this is a constant source of user frustration at HPC centers

‘ Lawrence Livermore National Laboratory O github.com/spack y @S packpm _.NA‘S_?E 22

LLNL-PRES-745770 —— —

Compiler dependencies

= Suppose we build a simple C++11 package with
the Intel compiler

— WeEe’ll model it as a build dependency 1
— Easy enough to represent this

= Suppose we want to reuse an already-installed
package built with an older Intel compiler

version (that isn’t available anymore)
— W.ith our relaxed constraint, build dependencies
allow us to mix compilers

= But how can we ensure that the

libstdc++ implementations are consistent?
— Id.so race!

Already-installed dependency

Lawrence Livermore National Laboratory 0 github.com/spack Y @spackpm NIYSE 2

So what is a compiler anyway?

= A compiler is a build dependency that IMPOSES a link dependency on a DAG

= Each compiler has “hidden” dependencies
— These are proper runtime libraries, so we need to model them like they are

= New plan:
— Still model compilers as build dependencies
— Bring out libstdc++ and other libraries from compilers as link dependencies
of the thing being built
» Ensures consistency across each DAG
— We'll Still “normalize” or “flatten” the (hidden) link dependencies in the DAG

‘ Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm .NA‘&_% 24

LLNL-PRES-745770 —— —

New compiler dependency model

Already-installed dep
e
.~ Compiler-imposed dep 5 \ L 4@
= Now consistency is enforced via link /
dependencies from 1 and 2
= |f the libstdc++ versions from 1 and 2 don’t
match, then this won’t resolve

= |f they do, then we know that the C++ libs
are compatible and can build this, even with
the old dependency.

= We currently use some heuristics to enforce
— Moving to SAT makes a lot of sense, again

‘ Lawrence Livermore National Laboratory O github.com/spack , @spackpm _I_V..A'__.&fé 25

LLNL-PRES-745770

Summary

= Working out constraints for compiler integration isn’t easy

= Weird things can happen S a c k

— build/link/run environment distinctions
— Architecture distinctions

— Constraints that manifest in strange ways across seemingly https://spack.io

separate parts of the DAG
+ Setuptools
+ Stdlib compatibility

= We are aiming to automate this part of build configuration k
— Better automate experimentation with build options Spac

— Lower cost of supporting multiple compilers for code teams

= Working on bringing out this new compiler model with the L
new dependency resolver (concretizer) in Spack this year. / J

Lawrence Livermore National Laboratory O github.com/SpaCk

LLNL-PRES-745770

%' @spackpm

LLg Lawrence Livermore
National Laboratory

