
LLNL-PRES-745770
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

How compilers affect dependency resolution in Spack
Package Management Devroom at FOSDEM 2018
Brussels, Belgium Todd Gamblin

Center for Applied Scientific Computing, LLNL

Feburary 3, 2018 @tgamblin

LLNL-PRES-745770
2@spackpmgithub.com/spack

LLNL is a multidisciplinary national security laboratory

§ Established in 1952

§ Approximately 6,000 employees

§ 1 square mile, 684 facilities

§ Annual federal budget: ~ $1.42B

2

LLNL-PRES-745770
3@spackpmgithub.com/spack

High-Performance Computing (HPC) is in the Lab’s DNA

3

Sequoia, a 1.5M-core Blue Gene/Q system.

LLNL-PRES-745770
4@spackpmgithub.com/spack

Spack is a general purpose, from-source package manager

§ Inspired somewhat by homebrew and nix

§ Targets HPC and scientific computing
— Community is growing!

§ Goals:
— Facilitate experimenting with performance options
— Flexibility. Make these things easy:

• Build packages with many different:
– compilers/versions/build options

• Change compilers and flags in builds (keep provenance)
• Swap implementations of ABI-incompatible libraries

– MPI, BLAS, LAPACK, others like jpeg/jpeg-turbo, etc.
— Build software stacks for scientific simulation and

analysis
— Run on laptops, Linux clusters, and some of the

largest supercomputers in the world

Spack
https://spack.io

LLNL-PRES-745770
5@spackpmgithub.com/spack

Spec CLI syntax makes it easy to install different ways

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cflags="-O3 –g3" setting compiler flags
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— ^ (caret) adds constraints on dependencies

LLNL-PRES-745770
6@spackpmgithub.com/spack

Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', 'abf60b7faabe7a2e’)
version('8.1.2', 'bf03b33375afa66f’)
version('8.1.1', 'd1a04e995b7aa709’)

depends_on("cmake", type="build")

depends_on("libelf", type="link")
depends_on("libdwarf", type="link")
depends_on("boost @1.42: +multithreaded")

def install(self, spec, prefix):
with working_dir('spack-build', create=True):

cmake('-DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=‘ + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
'..')

make()
make("install")

Metadata at the class level

Versions

Install logic in instance methods

Dependencies

Patches, variants, resources, conflicts, etc.
(not shown)

Simple Python DSL
— Packages are classes (ala homebrew)
— Directives use the same spec syntax

LLNL-PRES-745770
7@spackpmgithub.com/spack

§ mpi is a virtual dependency

§ Install the same package built with two
different MPI implementations:

§ Virtual deps are replaced with a valid
implementation at resolution time.
— If the user didn’t pick something and there

are multiple options, Spack picks.

Depend on interfaces (not implementations)
with virtual dependencies

$ spack install mpileaks ^mvapich

$ spack install mpileaks ^openmpi@1.4:

mpileaks

mpi

callpath dyninst

libdwarf

libelf

class Mpileaks(Package):
depends_on("mpi@2:")

class Mvapich(Package):
provides("mpi@1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package):
provides("mpi@:2.2" when="@1.6.5:")

Virtual dependencies can be versioned:

dependent

provider

provider

LLNL-PRES-745770
8@spackpmgithub.com/spack

Spack builds packages with compiler wrappers

Spack
Process

Set up environment

CC = spack/env/intel/icc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/intel/icpc SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/intel/ifort SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/intel/ifort SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Similar to homebrew “shims”
▪ Forked build process isolates environment for each build
▪ Use compiler wrappers to add include, lib, and RPATH flags
▪ RPATHs ensure that the correct dependencies are found

automatically at runtime.

LLNL-PRES-745770
9@spackpmgithub.com/spack

§ Each unique dependency graph is a unique
configuration.

§ Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

§ Hash of directed acyclic graph (DAG) metadata is
appended to each prefix
— Note: we hash the metadata, not the artifact.

§ Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to set LD_LIBRARY_PATH
— Things work the way you built them

Hashes handle combinatorial software complexity.

spack/opt/
linux-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

Hash

LLNL-PRES-745770
10@spackpmgithub.com/spack

Spack’s dependency model centers around “concretization”

mpileaks ^callpath@1.0+debug ^libelf@0.8.11

User input: abstract spec

Concrete spec is fully constrained
and can be built.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

§ Solves for more than package/version,
but similar to other resolvers

§ Dependencies need to be a DAG

§ Different dependency types:
— Build: tools run at build time
— Link: things linked with
— Run: things invoked at runtime

§ Only one instance of any dependency
can be in the concrete DAG.

§ Nodes can have different compilers

LLNL-PRES-745770
11@spackpmgithub.com/spack

Why one configuration of a package per DAG?

§ Languages like Javascript have support for multi-versions in a DAG
— (most?) native linkers do not

§ You can link an executable with libraries that depend on two different
versions of, say, libstdc++

§ You don’t want to do that:
— First one in which a function is called is loaded (this is a nasty race case)
— If ABI is different, you’ll get a fatal error when the second function version is called

§ In general, we can’t have two versions of one library
in the same process space

LLNL-PRES-745770
12@spackpmgithub.com/spack

Why aren’t compilers proper dependencies?

They should be, but…

1. We want to mix compilers in one DAG
— Can’t do this with our restriction
— Dependency model flattens compilers

2. We needed to auto-detect vendor compilers
— Often required for fastest builds
— Needed an expedient way to use what’s available

compilers:
- compiler:

modules: []
operating_system: ubuntu14
paths:
cc: /usr/bin/gcc/4.9.3/gcc
cxx: /usr/bin/gcc/4.9.3/g++
f77: /usr/bin/gcc/4.9.3/gfortran
fc: /usr/bin/gcc/4.9.3/gfortran

spec: gcc@4.9.3
- compiler:

modules: []
operating_system: ubuntu14
paths:
cc: /opt/intel/17.0.1/bin/icc
cxx: /opt/intel/17.0.1/bin/icpc
f77: /opt/intel/17.0.1/bin/ifort
fc: /opt/intel/17.0.1/bin/ifort

spec: intel@17.0.1
- ...

compilers.yaml

Auto-generated by searching environment

$ spack compilers
==> Available compilers
-- gcc ----------------------------------
gcc@4.9.3 gcc@7.2.0

-- clang --------------------------------
intel@17.0.1

LLNL-PRES-745770
13@spackpmgithub.com/spack

Why do HPC people care about compilers so much?

1. HPC people want to use fancy compilers for high performance

2. On many machines, this requires cross-compiling for the compute nodes
— Xeon Phi, Blue Gene, etc.

3. Some packages require compiler features, e.g.:
— OpenMP versions
— Language levels/verisons (C, C++, and Fortran have this)
— CUDA
— etc.

All of these pose some challenges for the dependency model

LLNL-PRES-745770
14@spackpmgithub.com/spack

Fancy vendor compilers

Advantages:

§ Intel compiler gets better performance and vectorization than gcc

§ Similar for Cray, PGI, XL compilers

Issues:

§ Fancy compilers tend to be hard to work with
— At least most of the CLI options are consistent these days

§ Most OSS projects don’t test with them, so builds are fraught with peril
— Things like CMake (and its dependencies) don’t always build with XL
— Typically no reason to build these with anything but the system compiler
— No performance benefit for vectorizing build tools

LLNL-PRES-745770
15@spackpmgithub.com/spack

How do we handle this?

§ We want to:
— Build build dependencies with the "easy" compilers
— Build rest of DAG (the link/run dependencies) with

the fancy compiler

§ Works well for porting most scientific codes
— Results in consistent compilers within processes

§ What we actually do is run the concretizer
separately for the pure build dependencies and
the link dependencies
— If something is shared between build and link, go

with the link version.

§ This is soon to be merged in.

1

2 5

3 4

B

B

76

L

L

8

R

BL

B: build L: link R: run

spack install pkg1 %intel

Easy compiler

Fancy compiler

1

2 5

3 4

B

B

76

L

L

8

R

BL

B

R

LLNL-PRES-745770
16@spackpmgithub.com/spack

Cross-compilation

§ Why cross-compile?
— Your machine has Xeon Phi processors or maybe it’s a BlueGene/Q
— You need to run a cross-compiler to build for the compute nodes

Login/build nodes

Compute nodes
PowerPC A2 (incompatible ISA)

Incompatible OS/runtime

Submit jobs

Run jobs

User login

LLNL-PRES-745770
17@spackpmgithub.com/spack

Why not build natively on the compute nodes?

§ In many cases, building on the compute nodes is very slow
— There are 72 Atom cores on a Knights Landing (Xeon Phi)
— Each is only 1.4 Ghz
— Typically only talk to network filesystem (diskless nodes)

§ Many tools (like compilers) are not ported to the compute node
— Compute node uses a stripped down OS (e.g., BG/Q)
— Maybe you don’t have that many licenses for your fancy compiler!

§ Generally you want to build on the machines with the big cores
— Fast Xeon front-end nodes
— Power8/Power9 nodes

LLNL-PRES-745770
18@spackpmgithub.com/spack

How do build dependencies work with cross-compiles?

§ Recall some of the dependency types:
— Build: tools run at build time.
— Link: things the package links with
— Run: things the package invokes at runtime.

§ Well, now you have an issue:
— you need your build dependencies built for a the architecture where you’re building
— Sometimes you can get away with cheating (build everything for the compute arch)

• Depends how close the compute OS and ISA are to the build nodes

§ We can use our build dependency trick here, but it’s a bit more complex

LLNL-PRES-745770
19@spackpmgithub.com/spack

Cross compiling and dependencies

§ Suppose you have a dependency that is both a
build dependency AND a link dependency.

§ Build dependency trick definitely helps

§ Could previously share the fancy compiler version
— But now you can’t b/c the compute version won’t

run in the build environment

1

2 5

3 4

B

B

76

L

L

8

R

BL

B: build L: link R: run

B

spack install pkg1 target=knl

Front end (Xeon)

Compute (KNL)

1

2 5

3 4 76

8

R

Can’t be a
build dep

Can’t be a
run dep of
a build dep

R

LLNL-PRES-745770
20@spackpmgithub.com/spack

Cross compiling and DAG splitting

§ We can solve this problem by building two
versions of the conflicting libraries
— Need to relax our DAG constraint

§ It’s ok to split these because the build and run
environments are separate process spaces
— not actually going to ever cause a race in ld.so

§ Now there are 2 versions of 5 and 8, though
— We’d like to minimize redundant versions

1

2 5

3 4

B

B

76

L

L

8

R

L

B: build L: link R: run

spack install pkg1 target=knl

Front end (Xeon)

Compute (KNL)

1

2 5

3 4 76

8

R
R

B

B

5’

B

B

8’

R

LLNL-PRES-745770
21@spackpmgithub.com/spack

Interesting cross-architecture constraints

§ Python doesn’t really understand cross-compilation
— you might not think it’d need to

§ Setuptools is a build tool that adds code to the installed package
— generated code is python version-dependent.
— now you need front-end python and back-end and compute python to be

the same version
— this constraint spans two parts of your DAG!

§ Your build env is not entirely separate from your run env
— Can’t just do independent resolution for build dependencies!

§ This is one reason we’re moving to SAT for dependency resolution
• Easier and more general to express constraints like this

native-pkg

python

RB

setuptools

B

python’

Must be same
version!

LLNL-PRES-745770
22@spackpmgithub.com/spack

Last issue: Compiler dependencies

§ Compilers are still a special case in Spack
— Represented as attributes of nodes, not as dependencies

§ Two issues:
1. Compiler can’t provide virtual dependencies like packages
2. Compilers can’t easily have their own dependencies

§ We’d like packages to be able to depend on C++11, C++17, OpenMP 4.5, etc.
— Requires compiler to provide C++ and OpenMP as virtual deps

§ Some compilers actually depend on other compilers!
— Intel compilers rely on gcc to provide libstdc++
— Verison ranges need to match for this to work properly!
— Coordinating this is a constant source of user frustration at HPC centers

LLNL-PRES-745770
23@spackpmgithub.com/spack

Compiler dependencies

§ Suppose we build a simple C++11 package with
the Intel compiler
— We’ll model it as a build dependency
— Easy enough to represent this

§ Suppose we want to reuse an already-installed
package built with an older Intel compiler
version (that isn’t available anymore)
— With our relaxed constraint, build dependencies

allow us to mix compilers

§ But how can we ensure that the
libstdc++ implementations are consistent?
— ld.so race!

1

intel@17

gcc

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dependency

LLNL-PRES-745770
24@spackpmgithub.com/spack

So what is a compiler anyway?

§ A compiler is a build dependency that IMPOSES a link dependency on a DAG

§ Each compiler has “hidden” dependencies
— These are proper runtime libraries, so we need to model them like they are

§ New plan:
— Still model compilers as build dependencies
— Bring out libstdc++ and other libraries from compilers as link dependencies

of the thing being built
• Ensures consistency across each DAG

— We’ll Still “normalize” or “flatten” the (hidden) link dependencies in the DAG

LLNL-PRES-745770
25@spackpmgithub.com/spack

New compiler dependency model

§ Now consistency is enforced via link
dependencies from 1 and 2

§ If the libstdc++ versions from 1 and 2 don’t
match, then this won’t resolve

§ If they do, then we know that the C++ libs
are compatible and can build this, even with
the old dependency.

§ We currently use some heuristics to enforce
— Moving to SAT makes a lot of sense, again

1

intel@17

gcc

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

LLNL-PRES-745770
26@spackpmgithub.com/spack

Summary

§ Working out constraints for compiler integration isn’t easy

§ Weird things can happen
— build/link/run environment distinctions
— Architecture distinctions
— Constraints that manifest in strange ways across seemingly

separate parts of the DAG
• Setuptools
• Stdlib compatibility

§ We are aiming to automate this part of build configuration
— Better automate experimentation with build options
— Lower cost of supporting multiple compilers for code teams

§ Working on bringing out this new compiler model with the
new dependency resolver (concretizer) in Spack this year.

Spack

Come and get Spack stickers!

https://spack.io

