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LLNL is a multidisciplinary national security laboratory

§ Established in 1952

§ Approximately 6,000 employees

§ 1 square mile, 684 facilities

§ Annual federal budget: ~ $1.42B
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High-Performance Computing (HPC) is in the Lab’s DNA
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Sequoia, a 1.5M-core Blue Gene/Q system.
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Spack is a general purpose, from-source package manager

§ Inspired somewhat by homebrew and nix

§ Targets HPC and scientific computing
— Community is growing!

§ Goals:
— Facilitate experimenting with performance options
— Flexibility.  Make these things easy:

• Build packages with many different:
– compilers/versions/build options

• Change compilers and flags in builds (keep provenance)
• Swap implementations of ABI-incompatible libraries

– MPI, BLAS, LAPACK, others like jpeg/jpeg-turbo, etc.
— Build software stacks for scientific simulation and 

analysis
— Run on laptops, Linux clusters, and some of the 

largest supercomputers in the world

Spack
https://spack.io
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Spec CLI syntax makes it easy to install different ways

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads     +/- build option
$ spack install mpileaks@3.3 cflags="-O3 –g3" setting compiler flags
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— ^ (caret) adds constraints on dependencies
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Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', 'abf60b7faabe7a2e’)
version('8.1.2', 'bf03b33375afa66f’)
version('8.1.1', 'd1a04e995b7aa709’)

depends_on("cmake", type="build")

depends_on("libelf", type="link")
depends_on("libdwarf", type="link")
depends_on("boost @1.42: +multithreaded")

def install(self, spec, prefix):
with working_dir('spack-build', create=True):

cmake('-DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=‘ + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
'..')

make()
make("install")

Metadata at the class level

Versions

Install logic in instance methods

Dependencies

Patches, variants, resources, conflicts, etc.
(not shown)

Simple Python DSL
— Packages are classes (ala homebrew)
— Directives use the same spec syntax
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§ mpi is a virtual dependency

§ Install the same package built with two 
different MPI implementations:

§ Virtual deps are replaced with a valid 
implementation at resolution time.
— If the user didn’t pick something and there 

are multiple options, Spack picks.

Depend on interfaces (not implementations) 
with virtual dependencies

$ spack install mpileaks ^mvapich

$ spack install mpileaks ^openmpi@1.4:

mpileaks

mpi

callpath dyninst

libdwarf

libelf

class Mpileaks(Package):
depends_on("mpi@2:")

class Mvapich(Package):
provides("mpi@1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package):
provides("mpi@:2.2" when="@1.6.5:")

Virtual dependencies can be versioned:

dependent

provider

provider
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Spack builds packages with compiler wrappers

Spack
Process

Set up environment

CC  = spack/env/intel/icc SPACK_CC  = /opt/ic-15.1/bin/icc
CXX = spack/env/intel/icpc SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/intel/ifort SPACK_F77 = /opt/ic-15.1/bin/ifort
FC  = spack/env/intel/ifort SPACK_FC  = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH   = ...      PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH      = ...

do_install()

Install dep1 Install dep2 Install package…

Build 
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers 
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Similar to homebrew “shims”
▪ Forked build process isolates environment for each build
▪ Use compiler wrappers to add include, lib, and RPATH flags
▪ RPATHs ensure that the correct dependencies are found 

automatically at runtime.
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§ Each unique dependency graph is a unique 
configuration.

§ Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

§ Hash of directed acyclic graph (DAG) metadata is 
appended to each prefix
— Note: we hash the metadata, not the artifact.

§ Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to set LD_LIBRARY_PATH
— Things work the way you built them

Hashes handle combinatorial software complexity.

spack/opt/
linux-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

Hash
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Spack’s dependency model centers around “concretization”

mpileaks ^callpath@1.0+debug ^libelf@0.8.11

User input: abstract spec

Concrete spec is fully constrained
and can be built.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

§ Solves for more than package/version, 
but similar to other resolvers

§ Dependencies need to be a DAG

§ Different dependency types:
— Build: tools run at build time
— Link: things linked with
— Run: things invoked at runtime

§ Only one instance of any dependency 
can be in the concrete DAG.

§ Nodes can have different compilers
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Why one configuration of a package per DAG?

§ Languages like Javascript have support for multi-versions in a DAG
— (most?) native linkers do not

§ You can link an executable with libraries that depend on two different 
versions of, say, libstdc++

§ You don’t want to do that:
— First one in which a function is called is loaded (this is a nasty race case)
— If ABI is different, you’ll get a fatal error when the second function version is called

§ In general, we can’t have two versions of one library 
in the same process space
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Why aren’t compilers proper dependencies?

They should be, but…

1. We want to mix compilers in one DAG
— Can’t do this with our restriction
— Dependency model flattens compilers

2. We needed to auto-detect vendor compilers
— Often required for fastest builds
— Needed an expedient way to use what’s available

compilers:
- compiler:

modules: []
operating_system: ubuntu14
paths:
cc: /usr/bin/gcc/4.9.3/gcc
cxx: /usr/bin/gcc/4.9.3/g++
f77: /usr/bin/gcc/4.9.3/gfortran
fc: /usr/bin/gcc/4.9.3/gfortran

spec: gcc@4.9.3
- compiler:

modules: []
operating_system: ubuntu14
paths:
cc: /opt/intel/17.0.1/bin/icc
cxx: /opt/intel/17.0.1/bin/icpc
f77: /opt/intel/17.0.1/bin/ifort
fc: /opt/intel/17.0.1/bin/ifort

spec: intel@17.0.1
- ...

compilers.yaml

Auto-generated by searching environment

$ spack compilers
==> Available compilers
-- gcc ----------------------------------
gcc@4.9.3    gcc@7.2.0

-- clang --------------------------------
intel@17.0.1
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Why do HPC people care about compilers so much?

1. HPC people want to use fancy compilers for high performance

2. On many machines, this requires cross-compiling for the compute nodes
— Xeon Phi, Blue Gene, etc.

3. Some packages require compiler features, e.g.:
— OpenMP versions
— Language levels/verisons (C, C++, and Fortran have this)
— CUDA
— etc.

All of these pose some challenges for the dependency model
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Fancy vendor compilers

Advantages:

§ Intel compiler gets better performance and vectorization than gcc

§ Similar for Cray, PGI, XL compilers

Issues:

§ Fancy compilers tend to be hard to work with
— At least most of the CLI options are consistent these days

§ Most OSS projects don’t test with them, so builds are fraught with peril
— Things like CMake (and its dependencies) don’t always build with XL
— Typically no reason to build these with anything but the system compiler
— No performance benefit for vectorizing build tools
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How do we handle this?

§ We want to:
— Build build dependencies with the "easy" compilers
— Build rest of DAG (the link/run dependencies) with 

the fancy compiler

§ Works well for porting most scientific codes
— Results in consistent compilers within processes

§ What we actually do is run the concretizer
separately for the pure build dependencies and 
the link dependencies
— If something is shared between build and link, go 

with the link version.

§ This is soon to be merged in.
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Cross-compilation

§ Why cross-compile?
— Your machine has Xeon Phi processors or maybe it’s a BlueGene/Q
— You need to run a cross-compiler to build for the compute nodes

Login/build nodes

Compute nodes
PowerPC A2 (incompatible ISA)

Incompatible OS/runtime

Submit jobs

Run jobs

User login
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Why not build natively on the compute nodes?

§ In many cases, building on the compute nodes is very slow
— There are 72 Atom cores on a Knights Landing (Xeon Phi)
— Each is only 1.4 Ghz
— Typically only talk to network filesystem (diskless nodes)

§ Many tools (like compilers) are not ported to the compute node
— Compute node uses a stripped down OS (e.g., BG/Q)
— Maybe you don’t have that many licenses for your fancy compiler!

§ Generally you want to build on the machines with the big cores
— Fast Xeon front-end nodes
— Power8/Power9 nodes
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How do build dependencies work with cross-compiles?

§ Recall some of the dependency types:
— Build: tools run at build time.
— Link: things the package links with
— Run: things the package invokes at runtime.

§ Well, now you have an issue:
— you need your build dependencies built for a the architecture where you’re building
— Sometimes you can get away with cheating (build everything for the compute arch)

• Depends how close the compute OS and ISA are to the build nodes

§ We can use our build dependency trick here, but it’s a bit more complex
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Cross compiling and dependencies

§ Suppose you have a dependency that is both a 
build dependency AND a link dependency.

§ Build dependency trick definitely helps

§ Could previously share the fancy compiler version
— But now you can’t b/c the compute version won’t 

run in the build environment
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Cross compiling and DAG splitting

§ We can solve this problem by building two 
versions of the conflicting libraries
— Need to relax our DAG constraint

§ It’s ok to split these because the build and run 
environments are separate process spaces
— not actually going to ever cause a race in ld.so

§ Now there are 2 versions of 5 and 8, though
— We’d like to minimize redundant versions
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Interesting cross-architecture constraints

§ Python doesn’t really understand cross-compilation
— you might not think it’d need to

§ Setuptools is a build tool that adds code to the installed package
— generated code is python version-dependent.
— now you need front-end python and back-end and compute python to be 

the same version
— this constraint spans two parts of your DAG!

§ Your build env is not entirely separate from your run env
— Can’t just do independent resolution for build dependencies!

§ This is one reason we’re moving to SAT for dependency resolution
• Easier and more general to express constraints like this

native-pkg

python

RB

setuptools

B

python’

Must be same 
version!
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Last issue: Compiler dependencies

§ Compilers are still a special case in Spack
— Represented as attributes of nodes, not as dependencies

§ Two issues:
1. Compiler can’t provide virtual dependencies like packages
2. Compilers can’t easily have their own dependencies

§ We’d like packages to be able to depend on C++11, C++17, OpenMP 4.5, etc.
— Requires compiler to provide C++ and OpenMP as virtual deps

§ Some compilers actually depend on other compilers!
— Intel compilers rely on gcc to provide libstdc++
— Verison ranges need to match for this to work properly!
— Coordinating this is a constant source of user frustration at HPC centers
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Compiler dependencies

§ Suppose we build a simple C++11 package with 
the Intel compiler
— We’ll model it as a build dependency
— Easy enough to represent this

§ Suppose we want to reuse an already-installed 
package built with an older Intel compiler 
version (that isn’t available anymore)
— With our relaxed constraint, build dependencies 

allow us to mix compilers

§ But how can we ensure that the 
libstdc++ implementations are consistent?
— ld.so race!

1

intel@17

gcc

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dependency
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So what is a compiler anyway?

§ A compiler is a build dependency that IMPOSES a link dependency on a DAG

§ Each compiler has “hidden” dependencies 
— These are proper runtime libraries, so we need to model them like they are

§ New plan:
— Still model compilers as build dependencies
— Bring out libstdc++ and other libraries from compilers as link dependencies

of the thing being built
• Ensures consistency across each DAG

— We’ll Still “normalize” or “flatten” the (hidden) link dependencies in the DAG
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New compiler dependency model

§ Now consistency is enforced via link 
dependencies from 1 and 2

§ If the libstdc++ versions from 1 and 2 don’t 
match, then this won’t resolve

§ If they do, then we know that the C++ libs 
are compatible and can build this, even with 
the old dependency.

§ We currently use some heuristics to enforce
— Moving to SAT makes a lot of sense, again
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Summary

§ Working out constraints for compiler integration isn’t easy

§ Weird things can happen
— build/link/run environment distinctions
— Architecture distinctions
— Constraints that manifest in strange ways across seemingly 

separate parts of the DAG
• Setuptools
• Stdlib compatibility

§ We are aiming to automate this part of build configuration
— Better automate experimentation with build options
— Lower cost of supporting multiple compilers for code teams

§ Working on bringing out this new compiler model with the 
new dependency resolver (concretizer) in Spack this year.

Spack

Come and get Spack stickers!

https://spack.io




