SMART CARDS IN LINUX
AND WHY YOU SHOULD CARE

Jakub Jelen
Red Hat

jjelen@redhat.com

PRIVATE KEYS, CERTIFICATES:
WHAT ARE THEY USED FOR?

PRIVATE KEYS, CERTIFICATES:
WHAT ARE THEY USED FOR?

Email signatures & encryption

SSH authentication

Git commit/tag signing

TLS client authentication (eGovernment)
More secure password replacement

WHERE ARE THEY
STORED?

e Hard drive
e Computer memory

ARE THEY SECURE?

I

DIRTY COW

SMART CARD: DEDICATED HW

THE MOST OBVIOUS
CREDITCARD-SIZE FORM

"SMART CARD": HW TOKEN

MORE PRACTICAL FORM

IN THIS TALK

Anatomy of smart card and software
OpenSC project
Practical examples

= Smart Card
= Other features

Troubleshooting

ANATOMY OF SMART CARD

AND ITS SOFTWARE STACK

ANATOMY

Smartcard
ISO/IEC 7816 - closed :(

» Electrical specification
= Commands (APDU)

pcsc-lite, CCID

= PC/SC protocol
= Chip card interface device
= pcscd system daemon

OpenSC

= drivers for cards
= exposing PKCS#11 interface

PKCS#11 interface
» for applications/libraries

Applications, Libraries

Firefox

ISO/IEC 7816

Smart Card

GnuPG NSS OpenSSH
PKCS#11
scdaemon OpenSC
PC/SC
pcsc-lite + CCID: pcscd
USB
Card reader USB token

OPENSC PROJECT

OPEN SOURCE SMART CARD TOOLS AND
MIDDLEWARE

OpenSC

OPENSC PROJECT

Card drivers

= Most of current cards (almost 40)
= PV, OpenPGP, CardOS, myEID
= Contributions: CAC, Coolkey (RHCS)

Multiplatform (Linux, Mac, Windows, ...)
Exposes PKCS#11 interface for other applications

= Way to read, write and operate on keys
= Prevents reading private data

Testing

= Mostly manual
= Cl running PKCS#11 testsuite for "our" cards

EXAMPLES

HOW CAN | DO ... WITH A SMART CARD?

(assuming already provisioned card with preloaded keys)

EXAMPLES

e Card inspection

e Atomic operations

e OpenSSH client

e sudo

e TLS Client Authentication
e Concurrent access

e GNuPG

CARD INSPECTION

PC/SC level (pcsc-tools)

$ pcsc_scan

PC/SC device scanner

V 1.4.25 (c) 2001-2011, Ludovic Rousseau
<ludovic.rousseaulfree.fr>

Compiled with PC/SC lite version: 1.8.22
Using reader plug'n play mechanism
Scanning present readers...

0: OMNIKEY AG CardMan 3121 00 00

Thu Jan 11 15:52:13 2018
Reader 0: OMNIKEY AG CardMan 3121 00 00

Card state: Card inserted, Shared Mode,

ATR: 3B FF 14 00 FF 81 31 FE 45 80 25 A0 00 00 00 56 57 53 43
36 35 30 03 03 38

[...]

CARD INSPECTION

PKCS#11 level: Token (opensc)

S pkcsll-tool --list-slots
Available slots:
Slot 0 (0x0): OMNIKEY AG CardMan 3121 00 00

token label : jjelen (jjelen)

token manufacturer : 534e SafeNet

token model : PKCS#15 emulated

token flags : login required, token initialized, PIN
initialized

hardware version : 0.0

firmware version : 0.0

serial num : 4e06500042005002

pin min/max : 4/32

CARD INSPECTION

PKCS#11 level: Objects (opensc)

S pkcsll-tool --list-objects --login
Using slot 0 with a present token (0x0)
Logging in to "jjelen (jjelen)".
Private Key Object; RSA

label: signing key for jjelen
ID: 01
Usage: sign

Public Key Object; RSA 1024 bits
label: signing key for jjelen
ID: 01
Usage: verify

Certificate Object; type = X.509 cert
label: signing key for jjelen

ID: 01
[oo.]

ATOMIC OPERATIONS

Download the certificate from a card and show its content

$ pkcsll-tool --read-object --id 01 --type cert \
--output-file cert.der
Using slot 0 with a present token (0x0)

$ openssl x509 -inform DER -in cert.der > cert.pem
$ openssl x509 -in cert.pem -text
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 41 (0x29)
Signature Algorithm: sha256WithRSAEncryption
Issuer: O = sjc.redhat.com Security Domain, CN = CA
Signing Certificate
Validity
Not Before: Jul 15 20:57:58 2016 GMT
Not After : Jul 14 20:57:58 2021 GMT
Subject: CN = Jakub Jelen, O = Token Key User, UID =
jjelen

ATOMIC OPERATIONS

Signature & Verification from command-line

$ pkcsll-tool --sign --id 01 --mechanism RSA-PKCS --login \
--input-file data --output-file data.sig

Using slot 0 with a present token (0x0)

Logging in to "jjelen (jjelen)".

Please enter User PIN:

Using signature algorithm RSA-PKCS

$ openssl rsautl -verify -certin -inkey cert.pem \
-in data.sig

[original signed data]

OPENSSH CLIENT

e List public keys on the smart card in OpenSSH format

$ ssh-keygen -D /usr/lib64/pkcsll/opensc-pkcsll.so
ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAAAgQCXBle8[...]2YuRJF6AuwrpQ==

e Install the keys to the server
e Connect to server

$ ssh -I /usr/lib64/pkcsll/opensc-pkcsll.so example.com
Enter PIN for 'PIV II (PIV Card Holder pin)':
e Store permanent configuration in client configuration

$ cat ~/.ssh/config
Host example.com
PKCS11Provider /usr/1lib64/pkcsll/opensc-pkcsll.so

e RSA keys only (OpenSSH bug #2474)

https://bugzilla.mindrot.org/show_bug.cgi?id=2474

OPENSSH CLIENT (SSH-AGENT)

e Start ssh-agent (does not work with gnome-keyring):

$ test -e "$SSH AUTH SOCK" || eval $(ssh-agent)

e Add a card:

$ ssh-add -s /usr/1lib64/pkcsll/opensc-pkcsll.so
Enter passphrase for PKCS#11:
Card added: /usr/lib64/pkcsll/opensc-pkcsll.so

e Connect to server:

$ ssh example.com

SUDO (PAM_SSH_AGENT_AUTH)

e Set up ssh-agent as in previous slide
e Store public key in

» /etc/security/authorized keys
e Configure sudo through pam:

$ cat /etc/pam.d/sudo

auth sufficient pam ssh agent auth.so \
file=/etc/security/authorized keys

e Even on remote hosts (forwarded ssh-agent)

TLS CLIENT AUTHENTICATION

e Firefox -> Preferences -> Privacy&Security -> Security

-> Security Devices -> Load

Device Manager

Security Modules and Devices Details
~ NSS Internal PKCS #11 Module

Generic Crypto Services

User Identification Request

Software Security Device Load PKCS#11 Device Driver

~ Builtin Roots Module Enter the information for the module you want to add.

System Trust Module Name: | OpenSC
Default Trust

Module filename: | /usr/lib64/pkcslllopensc-pkcsll.so| | Browse...

Cancel OK

This site has requested that you identify yourself with a certificate:
localhost:5556
Organization: **

Issued Under:

Choose a certificate to present as identification:

| Test Cardholder VIII [03:47:AF:74:F1:16:C3:E6:2B:85:16:E8:DD:4F:9E: 2D:EA:46:0A:41]

v H

Details of selected certificate:

Issued to: CN=Test Cardholder VIII,OU=Test Agency,OU=Test Department,O=Test
Government,C=US

Serial number: 03:47:AF:74:F1:16:C3:E6:2B:85:16:E8:DD:4F:9E: 2D:EA:46:0A:41

Valid from October 1, 2010, 10:30:00 AM GMT+2 to October 1, 2030, 10:30:00 AM
GMT+2

Key Usages: Signing

Issued by: CN=Test RSA 2048-bit CA for Test PIV Cards,OU=Test CA,O=Test Certificates
2010.C=US

[w1Remember this decision

CONCURRENT ACCESS

e Configuration: opensc.conf

drivers = PIV-II; # speed up detection and avoid mismatches
reader_ driver pcsc {
disconnect action=leave; # do not break concurrent sessions

}
e OpenSSH ssh-agent: long-running session

eval “ssh-agent™ && ssh-add -s /usr/lib64/opensc-pkcsll.so
ssh example.com

e pkcsll-tool: ad-hoc commands

pkcsll-tool --login --sign --id02 -mRSA-PKCS -i data -o data.sig

e Some applications require exclusive access (GnuPG sdaemon) :(
e More applet on a single card = problems

GNUPG

e Email, git commit signing

e GnuPG's scdaemon
= not using PKCS#11to access OpenPGP applets
» directly accessing PC/SC with exclusive access
= preventing other applications to use the card

e gnupg-pkcsii-scd

» Accessing cards using PKCS#11
= More complicated configuration

KERBEROS

e pkinit: pre-authentication (RFC 4556)

= Certificate and signature from PKCS#11
= krb5.conf
= pkinit identity = PKCS1ll:

e FreelPA 4.5: Mapping certificates to users

= Whole blobs X.509 blobs
» Flexible mapping rules
= replacing pam_pkcsi1

EXAMPLES

WHAT CAN | DO WITH OTHER HARDWARE
TOKENS?

EXAMPLES

e Yubikey, Nitrokey, Feitian
e 2nd factor authentication

= FIDO U2F
= OTP
= Yubico OTP

e Does not verify PIN
= can not be the only factor!

FIDO U2F

FIDO Universal 2nd Factor
Support:

= Chromium out of box
= Firefox 57: about:config

o security.webauth.u2f = true
Use cases

» Fortify authentication to websites
= Local login (pam_u?2f)

Alternative to SMS or OTP apps
Physical verification with touch

Have your Security Key?

Make sure your key is with you, but not connected to your computer
yet.

CANCEL NEXT

OATH-HOTP/TOTP

One-Time Password

= Standard OATH
= HMAC hash-based
= Securely stored secret key

Client:

= Yubikey Authenticator
= + Android version

Server (verification):
= Usually with PAM module
Physical verification with touch

(‘7“

File Edit Help

8278 2345
Alice

Example

925 434

alice @yubico.com

New credential

Issuer |

Account name lAIice

Secret key | HXDMVJIECJIWSRB3HWIZR4IFUGFTMXBOZ

Type Time based ¥ | Algorithm |SHA-1

Period |30 :] Digts |6
Require touch

Cancel

Save credential

YUBICO OTP

One-Time Password
= Yubico-version
Client:

= no drivers needed
= USB HID keyboard

Server (verification):
= Usually with PAM module

Physical verification with touch
AES encryption

The YubiKey ID is the
Identifier of the YubiKey
and does not change

Yubico Server

=

cccceebegujhingjrdejhgfnuetrgigvejhhgbkugded
The One Time Password

‘ ‘ only works once and a

ccccecbegujh ingjrdejhgfnuetrgigvejhhgbkugded new one is generated

every time the YubiKey
‘ is Used
Encrypted One Time Passcode

YubiKEY ID Counter

Unique Passcode

YubiKey OTP
Validated

Match
1D to
Server

Decrypt
Token With

User ID User AES Key

User Counter

t 1 T

TROUBLESHOOTING

WHAT COULD GO WRONG?

TROUBLESHOOTING SMART CARD

Is the reader/USB device detected?
= S[susb

|s the card detected in pcsc-lite?

m $ pcsc_scan

PCSC trace (APDU messages)

m S systemctl stop pcscd
$ sudo LIBCCID ifdLogLevel=0x000F pcscd --foreground --debug
—--apdu --color

|s the card detected in OpenSC?

" pkcll-tool -L

PKCS#11 level trace:

m export PKCS11SPY=/usr/lib64/pkcsll/opensc-pkcsll.so

m pkcsll-tool -L /usr/1lib64/pkcsll-spy.so

OpenSC debug logs:
" OPENSC_DEBUG=9 pkcll-tool -L

SMART CARDS SUMMARY

Not only cards!

Stores private keys securely
PKCS#11 interface for developers
Can replace passwords

Can strengthen passwords:

s U2F or OTP for second factor

Thank you for your attention

