
LoRa Reverse Engineering and AES 
EM Side-Channel Attacks using SDR

Pieter Robyns



About me

• PhD student at Hasselt University since 2014
– Since 2016 on FWO SBO research grant

• Researching wireless security
– Protocol security, location tracking, fingerprinting
– Machine learning and side channel analysis
– Wi-Fi, GSM, LoRa, proprietary protocols

• Website: https://robyns.me
Email: pieter.robyns@uhasselt.be

https://robyns.me
mailto:pieter.robyns@uhasselt.be


Motivation for researching LoRa

• Project started in April 2016 → LoRa was relatively new
– Introduced to LoRa by co-advisor

• A lot of opportunities to learn new things
– No working software-based decoders available, only simulations

→ Building a GNU Radio OOT module from scratch

– Limited description of the PHY layer: patents and blog posts
→ Reverse engineering low-level aspects of a protocol

– Fingerprinting and tracking devices over long ranges
→ Machine learning applied to fingerprinting instead of expert feature selection

– Side-channel attacks
→ IoT devices are inherently more vulnerable



Part 1
Unlocking the LoRa PHY



Unlocking the LoRa PHY

• Hardware LoRa radios can only be interfaced with over a 
serial connection

• We need access to the raw PHY signal for fingerprinting
⇒ Where do we start?

Microchip RN2483 + custom 
board made by my co-advisor



• GNU Radio to the rescue! Let’s inspect a transmission 
using a simple flowgraph

Unlocking the LoRa PHY



Unlocking the LoRa PHY

• Frame structure can be easily derived from patent
– See Patent EP2763321 A1
– Also contains information on:

→ Modulation
→ Interleaving

– Some other info located in datasheets:
→ Whitening and coding

• Let’s build a receiver!

https://www.google.com/patents/EP2763321A1


How do we detect the signal?

• Detecting: pretty standard problem in signal processing
• Multiple solutions possible; I chose Schmidl-Cox algorithm

– Autocorrelation exploiting the repeating property of the preamble

Preamble is here, 
but where does it 
start? 

Thresholding = bad!



How do we synchronize to the signal?

• Again multiple possibilities:
– Demodulate preamble symbol → supposed to be 0

→ Offset from 0 indicates a time shift (basic principle of LoRa modulation as we will see)
→ However: ambiguity because a frequency shift also causes an offset from 0!

– Cross-correlate instantaneous frequency with locally generated preamble
→ Higher sensitivity to noise, but no ambiguity



How do we demodulate a single symbol?

• Modulation of LoRa is based on Chirp Spread Spectrum
• Chirp = signal that linearly increases in frequency
• To modulate a value “i” onto chirp: cyclically time shift it!

Value: 0 (unmodulated) Value: 20 (spoiler: indexing ;))



How do we demodulate a single symbol?
• Cyclic shift results in a peak in the frequency domain when multiplied by a 

conjugate base chirp (+ resampling at chirp rate) ⇒ details not important for now
• Index is “gray” decoded. Encode to demodulate!

gray(0) == 0 == i gray(24) == 20 == i



Demodulation continued: interleaving

• Interleaving is trivial: algorithm provided in patent
– Spreading factor determines bits per symbol value (here: 7)
– Coding rate determines symbol values per interleave matrix (here: 8)

Only pitfall: the bit 
order → interleave 
direction

Binary value of 
FFT peak index



Unlocking the LoRa PHY: unknown aspects

• What’s left to be done?
– How do we detect the signal?
– How do we synchronize to the signal?
– How does the modulation and interleaving work?
– What is the relation between a raw symbol and its integer value?
– In which stage of the decoding is whitening performed and how?

• Not discussed in this presentation:
– Header structure
– Clock drift correction
– Swapping of nibbles + CRCs
– See my paper for more info!



Relation between symbol and integer value?

• Patent states “gray coding” is used
– Total of 4 possible mappings to symbol values:

• To check correctness: implement decoder up to 
interleaving and look for patterns
– Header is unwhitened ⇒ use header to check previous stages

gray(24) or degray(24)? gray(103) or degray(103)? Inverted
x-axis



• Example: sending packets with increasing payload sizes (SF 7)

01: 10001100 00001000 10000011 01000010 00101000 
02: 10001100 00001000 01100100 01000010 00101001 
03: 10001100 00001000 00000111 01000010 00100000 
10: 10001100 10000010 01100011 01000001 00100001 
11: 10001100 10000010 00000000 01000001 00101000 
12: 10001100 10000010 11100111 01000001 00101001 
20: 10001100 10000010 10100110 00000000 00100001 
21: 10001100 10000010 11000101 00000000 00101000 
22: 10001100 10000010 00100010 00000000 00101001 

c.   Relation between symbol and integer value?

01: 00000000 10001011 10011100 00000000 10001011 
02: 00000000 01001110 10011100 00000000 00101101 
03: 00000000 11000110 10011100 00000000 01001110 
10: 10001011 00000000 10011100 10001011 11111111 
11: 10001011 10001011 10011100 10001011 10011100 
12: 10001011 01001110 10011100 10001011 01100011 
20: 01001110 00000000 10011100 10001011 00111010 
21: 01001110 10001011 10011100 10001011 01011001 
22: 01001110 01001110 10011100 10001011 10100110 

10011000 10001011 10011010 00010000 00011110 
00011100 01001110 01111100 00010000 11100000 
00011100 11000101 00011110 00010000 10001010 
10010011 10001000 01111011 10011000 11110111 
10010011 00000011 00011001 10011000 10011101 
00010111 11000110 11111111 10011000 01100011 
11010010 11001000 10111110 11011001 00110010 
11010010 01000011 11011100 11011001 01011000 
01010110 10000110 00111010 11011001 10100110 

Gray encoding Gray decoding

Right to left 
(FFT bin)
127 → 0

00001100 01001010 10000011 01000010 00000000 
10001000 01001010 01000101 01000010 00100001 
10001000 01001010 00000111 01100010 00001000 
10001100 11000010 01000010 01000001 00100001 
10001100 11000010 00100000 01000001 00101000 
00001000 11000010 11000110 01000001 00101001 
00001000 10000010 10000111 00000000 00100001 
00001000 10000010 11100101 00000000 00101000 
10001100 10000010 00000011 00000000 00101001 

Hex len

Bin data

Left to right 
(FFT bin)
0 → 127

Inconsistent

Whitened?



How do we decode the obtained codewords?

• Coding: 4/5 - 4/8 as options imply Hamming coding
• Payload whitening: XOR with random LFSR

– Mentioned but specified algorithm doesn’t work in practice :(. 
– In what stage is the data whitened?
– Only payload is whitened → very useful!

01: 00000000 10001011 10011100 00000000 10001011 
02: 00000000 01001110 10011100 00000000 00101101 
03: 00000000 11000110 10011100 00000000 01001110 
10: 10001011 00000000 10011100 10001011 11111111 
11: 10001011 10001011 10011100 10001011 10011100 
12: 10001011 01001110 10011100 10001011 01100011 
20: 01001110 00000000 10011100 10001011 00111010 
21: 01001110 10001011 10011100 10001011 01011001 
22: 01001110 01001110 10011100 10001011 10100110 



How do we decode the obtained codewords?

• Fastest solution: brute force
• Whitening: send payload with all zeros

– Hamming code of 0000 is 00000000, which is convenient
– Ideas for determining LFSR algebraically welcome!

• Hamming codes
– Try all possible bit permutations for a header byte. Choose the one without 

decode errors
– Verify with multiple (all possible) header byte values
– 10001011

00100010 XOR 00000000



• Overview of all components linked together:
Results



• Comparison with real hardware:

• Code: https://github.com/rpp0/gr-lora
– Special thanks to my student William for implementing some optimizations

• Other decoders / related work
– LoRa-SDR: https://github.com/myriadrf/LoRa-SDR
– BastilleResearch’s gr-lora: https://github.com/BastilleResearch/gr-lora

Results

https://github.com/rpp0/gr-lora
https://github.com/myriadrf/LoRa-SDR
https://github.com/BastilleResearch/gr-lora


Application
Fingerprinting LoRa devices using neural networks



Why fingerprint devices?

• Defensive
– Extra layer of defense in critical infrastructure → detect unknown devices
– Possibly counter relay attacks
– Measure degree of privacy provided by device

• Offensive
– Linking anonymous transmissions (e.g. defeat MAC randomization)
– Tracking the location of sensors (e.g. to take them down)
– Mimic radio signature of a device to defeat IDSs

• Caveat: cat-and-mouse game between attacker and 
defender!



PHY-layer fingerprinting theory

• Hypothesis: no two radios can be perfectly identical
– Manufacturing differences in circuits, crystal oscillators, components, … 

→ Manifest as per-device transmission errors (e.g. frequency offset)
→ Error tolerance typically defined within data sheets (e.g. ± 12 KHz)
→ Larger tolerance implies more entropy

• Challenge: distinguish noise from errors caused by the 
radio hardware
– Traditional approach: use statistical measures on “expert features”

→ Carrier Frequency Offset, Sampling Frequency Offset, Preamble Transient,...
– My approach: apply machine learning to the raw radio signal

→ Similar techniques applied in face recognition, image classification, etc.



Simplified comparison

● “Human” filtering at feature level
● Resulting features can be learned 

with ML or statistical distance 
measures

● Unimportant features are filtered 
through weight values

● Consider raw samples as 
features

S
oftm

ax



Training the neural network

Label transmission 
with LoRa device.1. Feed data through 

neurons and check 
resulting outputs.

2. Evaluate the result in terms of a “loss” 
function, and update the neuron 
weights accordingly. Repeat step 2.

3.
S

oftm
ax



LoRa fingerprinting experiment

• Experiment: can we uniquely identify 22 LoRa devices?
– 3 different vendors

→ 1 SX1272
→ 2 RF96
→ 19 RN2483

– Model: simple MLP from previous slides
– Training data: ~100,000 symbols
– Test data: ~1,000 symbols 

• 95% accuracy
– However: tradeoff between sensitivity to noise and being able to detect 

fine-grained differences between devices → noise is a problem



Results

Outline: predicted device

Fill: true device

Correct Incorrect

Each point is one symbol! 
(>16 symbols per frame)



Part 2
EM side-channel attacks on AES



• Implementation leaks information through “side channel”
• Attacker gains advantage based on this information
• Numerous types of side channels:

– Timing
– Acoustic
– Power consumption
– Temperature
– Cache
– Electromagnetic

What is a side channel attack?

Correlated?



Motivation

• EM side-channel attacks (on AES) are interesting
– Used by LoRa, Wi-Fi, TLS, IPsec, apps, ...

• Attack techniques have been around for quite some time, 
but expensive equipment often required

• Can we do these TEMPEST-style attacks with cheap 
SDRs?

– We will discuss a simple Correlation Power Attack (more complicated attacks exist)

https://en.wikipedia.org/wiki/Tempest_(codename)


Examples of EM side channel attacks

1. (Attacker sends data to encrypt)

2. Victim inadvertently leaks info
through electromagnetic radiation

3. Attacker captures info and 
predicts key based on a model

Icons made by Freepik from www.flaticon.com 

http://www.freepik.com/
http://www.flaticon.com/


EM models

• Behavior of system can be approximated with a model
• Accuracy of model is crucial for successful attack
• Some observations:

– Amplitude of electromagnetic radiation is proportional to power
– Power is required to change state of a circuit

⇒ State changes cause variations in the amplitude of 
EM radiation, proportional to their power consumption

• What happens if we would AM demodulate AES 
encryptions?



Case: AES on ATmega 328p

• Case study: AM demodulated AES encryptions performed 
by an ATmega 328p (Riscure competition)
– Key size and key unknown; black box

• What we can learn from related works:
– Lower frequencies must be favored[1]

– Harmonics of CPU clock frequency contain useful information[2]

• Equipment: USRP B210 + amplifier + EM probe
– ~18,000 traces. More = better

[1] A Frequency Leakage Model and its application to CPA and DPA, Sébastien Tiran et al., IACR Cryptology ePrint Archive, 2013
[2] The EM Side–Channel(s):Attacks and Assessment Methodologies, Dakshi Agrawal et al., CHES 2002.



Case: AES on ATmega 328p



Case: AES on ATmega 328p

• AM demodulation of raw capture:

Sample

Amplitude

Noisy



• After low pass filter

Case: AES on ATmega 328p

Sample

Amplitude Not 

aligned



• After cross-correlation with reference signal

Case: AES on ATmega 328p

Sample

Amplitude

   1           2            3           4            5           6            7           8           9           10      

10-round AES? = 128-bit key



• Where is the secret key in AES used?

Extending our model to attack AES

Source: http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tc/2013/03/figures/ttc20130305361.gif

https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/AES-AddRoundKey.svg/2000px-AES-AddRoundKey.svg.png

Source: The Design of Rijndael, Joan Daemen and Vincent Rijmen, Springer, 2002.



• Assume output of SubBytes is vulnerable for now

Extending our model to attack AES

Source: http://doi.ieeecomputersociety.org/cms/Computer.org/dl/trans/tc/2013/03/figures/ttc20130305361.gif

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/AES-SubBytes.svg/1200px-AES-SubBytes.svg.png



• What happens inside the chip?
– Initial state is unknown reference state 
– After AddRoundKey and SubBytes, the state is 

• Current consumed ~ state changes on clock edge
– Therefore, it’s given by Hamming distance between       and

• Hamming weight also works in practice if R = 0

Extending our model to attack AES

00100110
10101000

Hamming 
Distance = 4



Case: AES on ATmega 328p

0x00

0x01

0xff

.
.
.

Build models 
for each 

possible key 
byte

Chosen by attacker 
and varied each trace



• Measure reality

Case: AES on ATmega 328p

Sample

Amplitude

Round 1

One-point amplitude 
measurement for byte d of key



• Final step: correlate reality with model for each trace
• Highest correlation hypothesis is most likely key byte
• Absolute value of Pearson correlation

– Note: only linear correlation!

• “Correlation Power Attack”

Case: AES on ATmega 328p



• Using ChipWhisperer to perform CPA attack:

Extra: SDR plugin for NewAE ChipWhisperer

Available at: http://research.edm.uhasselt.be/probyns/cw_hacky_usrp_plugin.zip

Case: AES on ATmega 328p

http://research.edm.uhasselt.be/probyns/cw_hacky_usrp_plugin.zip


• Using ChipWhisperer to perform CPA attack:

0x
77

Case: AES on ATmega 328p



Case: AES on ATmega 328p

• Using EMMA (soon-to-be open source)
– Uses multiple cores per node and can run on multiple machines



Closing statements

• All my finished research is open source

• Some of my current research directions
– Relation to machine learning → loss function and features vs. correlation

→ Can we improve the state of the art in this way?

– Increasing the range of EM attacks
→ Analyzing below the noise floor, custom antenna designs, etc.

– Open to collaborations!

https://github.com/rpp0/gr-lora

https://github.com/rpp0/lora-phy-fingerprinting

Decoder:

Fingerprinting:

ChipWhisperer plugin: http://research.edm.uhasselt.be/probyns/cw_hacky_usrp_plugin.zip

https://github.com/rpp0/gr-lora
https://github.com/rpp0/lora-phy-fingerprinting
https://newae.com/tools/chipwhisperer/
http://research.edm.uhasselt.be/probyns/cw_hacky_usrp_plugin.zip


Further reading

• Here are some related papers which I found interesting
Fingerprinting

– Why MAC address randomization is not enough... (Mathy Vanhoef et al.)
– Challenges to PHY anonymity for Wi-Fi (Peter Iannucci)
– Convolutional Radio Modulation Recognition... (Timothy O’Shea et al.)
– Unsupervised Learning on Neural Network Outputs (Yao Lu et al.)
– Device Fingerprinting in Wireless Networks… (Qiang Xu et al.)

EM side-channel attacks
– Correlation Power Analysis with a Leakage Model (Eric Brier et al.)
– Enhancing Electromagnetic Side-Channel Analysis in... (David P. Montminy.)
– NewAE Wiki page (https://wiki.newae.com/Main_Page)
– Power Analysis Attacks against IEEE 802.15.4 Nodes (Colin O’Flynn et al.)

https://wiki.newae.com/Main_Page


Other nice examples of EM side channel attacks

Icons made by Freepik from www.flaticon.com 

Fully extract decryption keys, by measuring 
the laptop's chassis potential during 
decryption of a chosen ciphertext.

Full extraction of ECDSA secret signing 
keys from OpenSSL and CoreBitcoin 

running on iOS devices.

Source: https://www.tau.ac.il/~tromer/handsoff/

http://www.freepik.com/
http://www.flaticon.com/


Demo



Questions?
pieter.robyns@uhasselt.be

mailto:pieter.robyns@uhasselt.be


Extra slides



But wait, what about devices that we can’t train?

• Technique called zero shot classification
– Learn “attributes” during training
– Describe unseen devices using learned attributes
– Example: cluster on neural network outputs that was trained with a 

number known LoRa devices



But wait, what about devices that we can’t train?



But wait, what about devices that we can’t train?

F2

F1



Visualizing the raw data
• Visualizing the signal using Principal Component Analysis (PCA):



SCAs within the vulnerability landscape

Cryptographic 
vulnerabilities

Theoretical 
vulnerabilities

Protocol 
vulnerabilities

Brute-force attack

Linear cryptanalysis
Differential cryptanalysis

Side-channel attack (hw)?
Prime factorization
...

Bad RNG

Relay attack
MITM attack
Replay attack

Side-channel attack (sw)?

...

Implementation 
vulnerabilities

Sierra root bug
Heartbleed
Shellshock

P
atch difficulty

...

Secure 
calculation

Secure 
communication

Secure 
coding



SCAs within the vulnerability landscape

Cryptographic 
vulnerabilities

Theoretical 
vulnerabilities

Protocol 
vulnerabilities

Brute-force attack

Linear cryptanalysis
Differential cryptanalysis

Side-channel attack (hw)?
Prime factorization
...

Bad RNG

Relay attack
MITM attack
Replay attack

Side-channel attack (sw)?

...

Implementation 
vulnerabilities

Sierra root bug
Heartbleed
Shellshock

P
atch difficulty

...

Secure 
calculation

Secure 
communication

Secure 
coding

Should the hardware or theoretical design automatically mitigate 
dangerous calculations (temperature, radiation,...) or should the 
programmer implement the theoretical design in such a way that 

exploitation is not possible?


