
Sancus 2.0: Open-Source Trusted Computing for the IoT

Jan Tobias Mühlberg
jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

FOSDEM, Brussels, February 2018

Joint work with Job Noorman, Jo Van Bulck, Frank Piessens,
Pieter Maene, Ingrid Verbauwhede and many others.

jantobias.muehlberg@cs.kuleuven.be


empty

Security

1 Understand the system.
• Context, hardware, software, data, users,

use cases, etc.
2 Understand the security requirements.

• Requirements are not features!
• “Only authenticated users can do X. Two-factor

authentication is required for all users. All X are
logged, detailing time, user and properties of X.”

3 Understand the attacker.
• “Attackers can listen to all communication,

can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

2 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source of images 1, 2, 3: https://en.wikipedia.org/

https://en.wikipedia.org/


empty

Security

1 Understand the system.
• Context, hardware, software, data, users,

use cases, etc.

2 Understand the security requirements.
• Requirements are not features!
• “Only authenticated users can do X. Two-factor

authentication is required for all users. All X are
logged, detailing time, user and properties of X.”

3 Understand the attacker.
• “Attackers can listen to all communication,

can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

2 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source of images 1, 2, 3: https://en.wikipedia.org/

https://en.wikipedia.org/


empty

Security

1 Understand the system.
• Context, hardware, software, data, users,

use cases, etc.
2 Understand the security requirements.

• Requirements are not features!
• “Only authenticated users can do X. Two-factor

authentication is required for all users. All X are
logged, detailing time, user and properties of X.”

3 Understand the attacker.
• “Attackers can listen to all communication,

can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

2 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source of images 1, 2, 3: https://en.wikipedia.org/

https://en.wikipedia.org/


empty

Security

1 Understand the system.
• Context, hardware, software, data, users,

use cases, etc.
2 Understand the security requirements.

• Requirements are not features!
• “Only authenticated users can do X. Two-factor

authentication is required for all users. All X are
logged, detailing time, user and properties of X.”

3 Understand the attacker.
• “Attackers can listen to all communication,

can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

2 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source of images 1, 2, 3: https://en.wikipedia.org/

https://en.wikipedia.org/


empty

Security

1 Understand the system.
2 Understand the security requirements.
3 Understand the attacker.

4 Understand and embrace change!
• Discovery of vulnerabilities
• Different understanding of the system
• New (functional|security) requirements
• New attacks, different attackers

3 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

“New zero-day vulnerability: In addition
to rowhammer, it turns out lots of servers
are vulnerable to regular hammers, too.”

Source: https://xkcd.com/1938/

https://xkcd.com/1938/


empty

Security

1 Understand the system.
2 Understand the security requirements.
3 Understand the attacker.

4 Understand and embrace change!
• Discovery of vulnerabilities
• Different understanding of the system
• New (functional|security) requirements
• New attacks, different attackers

3 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

“New zero-day vulnerability: In addition
to rowhammer, it turns out lots of servers
are vulnerable to regular hammers, too.”

Source: https://xkcd.com/1938/

https://xkcd.com/1938/


empty

Security

1 Understand the system.
2 Understand the security requirements.
3 Understand the attacker.

4 Understand and embrace change!
• Discovery of vulnerabilities
• Different understanding of the system
• New (functional|security) requirements
• New attacks, different attackers

3 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

“New zero-day vulnerability: In addition
to rowhammer, it turns out lots of servers
are vulnerable to regular hammers, too.”

Source: https://xkcd.com/1938/

https://xkcd.com/1938/


empty

Trusted Computing

According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

4 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing


empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

4 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing


empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

4 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing


empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

4 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing


empty

Trusted Computing
According to the Trusted Computing Group
Protect computing infrastructure at end points;
Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

• Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

• Memory curtaining: provide isolation of sensitive areas of memory
• Sealed storage: Bind data to specific device or software
• Remote attestation: authenticate hardware and software configuration to a

remote host
• Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure I/O capabilities

4 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://en.wikipedia.org/wiki/Trusted_Computing

https://en.wikipedia.org/wiki/Trusted_Computing


empty

Trusted Computing
According to Richard Stallman
Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents. . .
• Buggy software: think of OpenSSL’s Heartbleed in an enclave
• Side channels: timing, caching, speculative execution, etc.
• Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
• Malicious intent: Backdoors, ransomware, etc.

5 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://www.gnu.org/philosophy/can-you-trust.html

https://www.gnu.org/philosophy/can-you-trust.html


empty

Trusted Computing
According to Richard Stallman
Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents. . .
• Buggy software: think of OpenSSL’s Heartbleed in an enclave
• Side channels: timing, caching, speculative execution, etc.
• Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
• Malicious intent: Backdoors, ransomware, etc.

5 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://www.gnu.org/philosophy/can-you-trust.html

https://www.gnu.org/philosophy/can-you-trust.html


empty

Trusted Computing (and why Sancus?)
Good design practice for trusted computing?
Good use cases for trusted computing?

• non-invasive, understandable,
measurably secure

• stuff that matters: critical applications,
critical infrastructure, embedded

Don’t restrict the user but enable them,
convince them to trust.
Build to validate, invite to crutinize:
hardware and software.
Build upon well-understood OSS building
blocks: hardware, crypto, compilers, OS, libs
Divide and conquer: memory curtaining
and isolation make validation easier

6 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09


empty

Trusted Computing (and why Sancus?)
Good design practice for trusted computing?
Good use cases for trusted computing?

• non-invasive, understandable,
measurably secure

• stuff that matters: critical applications,
critical infrastructure, embedded

Don’t restrict the user but enable them,
convince them to trust.
Build to validate, invite to crutinize:
hardware and software.
Build upon well-understood OSS building
blocks: hardware, crypto, compilers, OS, libs
Divide and conquer: memory curtaining
and isolation make validation easier

6 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Source: https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09


empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space

• Boundaries between applications
are not enforced

• Integrity? Confidentiality?
Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced

• Integrity? Confidentiality?
Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O

• Built-in cryptography and (remote)
attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O

• Built-in cryptography and (remote)
attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

• Applications share address space
• Boundaries between applications

are not enforced
• Integrity? Confidentiality?

Authenticity?

Trusted Computing aims to fix that:
• Strong isolation, restrictive

interfaces, exclusive I/O
• Built-in cryptography and (remote)

attestation

7 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Comparing Hardware-Based Trusted Computing Architectures

8 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Isolatio
n

Atte
statio

n

Sealin
g

Dynamic RoT

Code Confidentia
lity

Side-Channel Resistance

Memory
Protectio

n

Lightweight

Coprocessor

HW-Only TCB

Preemptio
n

Dynamic Layout

Upgradeable TCB

Backwards Compatib
ilit

y

Open-Source

Academic

Target ISA

AEGIS –

TPM – – – –
TXT x86_64

TrustZone ARM

Bastion UltraSPARC

SMART – – – AVR/MSP430

Sancus 1.0 MSP430
Soteria MSP430
Sancus 2.0 MSP430

SecureBlue++ POWER

SGX x86_64

Iso-X OpenRISC

TrustLite Siskiyou Peak

TyTAN Siskiyou Peak

Sanctum RISC-V

= Yes; = Partial; = No; – = Not Applicable

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC+17]



empty

Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives

• Software Component
Isolation

• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

9 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

https://distrinet.cs.kuleuven.be/software/sancus/


empty

Sancus: Strong and Light-Weight Embedded Security [NVBM+17]
Extends openMSP430 with
strong security primitives

• Software Component
Isolation

• Cryptography & Attestation
• Secure I/O through isolation

of MMIO ranges

Efficient
• Modular, ≤ 2 kLUTs
• Authentication in µs
• + 6% power consumption

Cryptographic key hierarchy
for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

10 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

N = Node; SP = Software Provider / Deployer
SM = protected Software Module

Unprotected

E
nt

ry
po

in
t

Code & constants Unprotected

SM text section

Protected data

SM protected data section

Unprotected

M
em

or
y

KN,SP,SM SM metadata

Layout Keys

Protected
storage
areaKN

https://distrinet.cs.kuleuven.be/software/sancus/


empty

Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key

• Only SM on N is allowed to use KN,SP,SM
Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness

11 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Attestation and Communication with Sancus
Ability to use KN,SP,SM proves the integrity and isolation
of SM deployed by SP on N

• Only N and SP can compute KN,SP,SM
N knows KN and SP knows KSP

• KN,SP,SM on N is computed after enabling isolation
No isolation, no key; no integrity, wrong key

• Only SM on N is allowed to use KN,SP,SM
Through special instructions

Remote attestation and secure communication by
Authenticated Encryption with Associated Data

• Confidentiality, integrity and authenticity
• Encrypt and decrypt instructions use KN,SP,SM of the calling SM
• Associated Data can be used for nonces to get freshness

11 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Secure Automotive Computing with Sancus [BMP17]

12 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

Modern cars can be hacked!
• Network of more than 50 ECUs
• Multiple communication networks
• Remote entry points
• Limited built-in security mechanisms Miller & Valasek, “Remote exploitation of an unaltered passenger vehicle”, 2015

Sancus brings strong security for
embedded control systems:

• Message authentication
• Trusted Computing: software component

isolation and cryptography
• Strong software security
• Applicable in automotive, ICS, IoT, . . .



empty

Secure Automotive Computing with Sancus [BMP17]

VulCAN: Generic design to exploit light-weight TC in CAN-based control
networks; https://distrinet.cs.kuleuven.be/software/vulcan/
Implementation: based on Sancus [NVBM+17]; we implement, strengthen and
evaluate authentication protocols, vatiCAN [NR16] and LeiA [RG16]

13 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

https://distrinet.cs.kuleuven.be/software/vulcan/


empty

Attacking the CAN

Complex bus system with many ECUs and gateways to other communication
systems; no protection against message injection or replay attacks.
→ Message Authentication; specified in AUTOSAR, proposals: vatiCAN, LeiA;
no efficient and cost-effective implementations yet

14 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Attacking CAN Message Authentication

What about Software Security?
Lack of security mechanisms on light-weight ECUs leverages software
vulnerabilities: attackers may be able to bypass encryption and authentication.
→ Software Component Authentication & Isolation

15 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Vulcanising Distributed Automotive Applications

• Critical application components in enclaves: software isolation + attestation

• Authenticated CAN messages over untrusted system software/network
• Rogue ECUs, software attackers and errors in untrusted code cannot interfere

with security, but may harm availability
• Infrastructure support: Trusted Computing, Sancus

16 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Vulcanising Distributed Automotive Applications

• Critical application components in enclaves: software isolation + attestation
• Authenticated CAN messages over untrusted system software/network

• Rogue ECUs, software attackers and errors in untrusted code cannot interfere
with security, but may harm availability

• Infrastructure support: Trusted Computing, Sancus

16 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Vulcanising Distributed Automotive Applications

• Critical application components in enclaves: software isolation + attestation
• Authenticated CAN messages over untrusted system software/network
• Rogue ECUs, software attackers and errors in untrusted code cannot interfere

with security, but may harm availability

• Infrastructure support: Trusted Computing, Sancus

16 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Vulcanising Distributed Automotive Applications

• Critical application components in enclaves: software isolation + attestation
• Authenticated CAN messages over untrusted system software/network
• Rogue ECUs, software attackers and errors in untrusted code cannot interfere

with security, but may harm availability
• Infrastructure support: Trusted Computing, Sancus

16 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Performance Evaluation: Round-Trip Time Experiment

Scenario Cycles Time Overhead

Legacy 20,250 1.01 ms –
vatiCAN (extrapolated) 121,992 6.10 ms 502%
Sancus+vatiCAN unprotected 35,236 1.76 ms 74%
Sancus+vatiCAN protected 36,375 1.82 ms 80%
Sancus+LEIA unprotected 42,929 2.15 ms 112%
Sancus+LEIA protected 43,624 2.18 ms 115%

Sender Receiver
ping

ping_auth

pong

pong_a
uth

compute
MACpinд

compute
MACponд

compute
MACpinд

compute
MACponдro

un
d-
tr
ip

tim
e

• Hardware-level crypto: +400% performance gain
• Modest ~5% performance impact for software isolation

17 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Authentic Execution of Distributed Event-Driven Applications

“Authentic Execution of Distributed Event-Driven Applications with a Small TCB”,
Noorman et al., STM 2017. [NMP17]

18 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Summary
Security

1 Understand the system
2 Understand the security requirements
3 Understand the attacker
4 Understand and embrace change

Trusted Computing
1 Strong security for distributed applications
2 Requires correct hardware and software
3 High potential for invasive use

Sancus
1 The Open-Source Trusted Computing Architecture
2 Built upon openMSP430 16-bit MCU, applications

in IoT and embedded control systems
3 Research prototype under active development!

19 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Ongoing Work
IoT Trust Assessment: secure inspection SW

Secure I/O: trusted Paths between
sensors and actuators on distributed nodes

Programming Models: authenticity
and integrity for event-driven distributed apps

Integration, toolchain and hardware
maturity: ext. application scenarios,
involve SGX and TrustZone, compiler fixes

Attacks and Mitigation: side channels

Availability and Real-Time: to control reactive safety-critical components in, e.g.
automotive, avionic and medical domains

Safe Languages and Formal Verification: guarantee safe operation and
absence of vulnerabilities in hardware and software

20 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing



empty

Thank you!

Thank you! Questions?
https://distrinet.cs.kuleuven.be/software/sancus/

21 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing

https://distrinet.cs.kuleuven.be/software/sancus/


empty

References I
J. V. Bulck, J. T. Mühlberg, and F. Piessens.
Efficient component authentication and software isolation for automotive control networks.
In ACSAC ’17, pp. 225–237. ACM, 2017.

P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, and I. Verbauwhede.
Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, PP(99):1–1, 2017.

C. Miller and C. Valasek.
Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015.

J. Noorman, J. T. Mühlberg, and F. Piessens.
Authentic execution of distributed event-driven applications with a small TCB.
In STM ’17, vol. 10547 of LNCS, pp. 55–71, Heidelberg, 2017. Springer.

S. Nürnberger and C. Rossow.
– vatiCAN – Vetted, Authenticated CAN Bus, pp. 106–124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

J. Noorman, J. Van Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling.
Sancus 2.0: A low-cost security architecture for IoT devices.
ACM Transactions on Privacy and Security (TOPS), 20:7:1–7:33, 2017.

A.-I. Radu and F. D. Garcia.
LeiA: A Lightweight Authentication Protocol for CAN, pp. 283–300.
Springer International Publishing, Cham, 2016.

22 /22 Jan Tobias Mühlberg Sancus 2.0, Trusted Computing


