
Why you should take a look at

Antonin Carette - FOSDEM 2018 - Rust devroom
Slides and resources available @ github.com/k0pernicus/fosdem_rust_talk

1

Chalut 'tiot Biloute!

I tried to understand what the computer I trained to understand
understood

Free & Open Source <3

French guy, you know... The accent... Yep...

k0pernicus

2

At the beginning...
a need

3 . 1

Since 2000, for consumers,
big changes:

from 32bit to 64bit
architectures,
from mono-core to multi-
core architectures,
from mono-thread to multi-
threaded applications,
more powerful hardware,
a lot of new softwares,
etc...

Since 2000, for developers,
big troubles:

from sequential code to
multi-threaded/multi-core
support applications,
data race issues,
big memory leaks
problems,
big RAM consumption,
the software race,
etc...

3 . 2

"Must be This Tall to Write
Multi-Threaded Code"

http://bholley.net/blog/2015/must-be-this-tall-to-write-multi-

threaded-code.html

3 . 3

We need a memory and
threads safe programming
language, with the same
performance than C++.

3 . 4

3 . 5

 = Rust, a modern, safe, fast,
and concurrent Open Source
systems programming language.

4

Quick history

5

Content / Layers

1. Core concepts
2. What developers want!? Productivity!
3. Open Source is not only code!
4. Awesome companies && awesome projects
5. #Rust2018
6. Conclusion

6

Beyond the best features

Immutability (default)
Memory leaks and data race
safety, raised at compilation
time
Zero-cost abstraction
Define type behaviours with
traits
Rich build tool (cargo)

Generics
Multiple metaprogramming
levels
FFI (C, Ruby, Python, Haskell, etc.)
WASM
Rich error handling
etc...

7 . 1

the DVD seller,
and the customer.

Once upon a time...

Vector author: macrovector (Freepik)

7 . 2

Feature::MemSafety

I would like to
buy this DVD!

7 . 3

Feature::MemSafety

Sorry sir, but the
box is empty...

7 . 4

Feature::MemSafety

struct DVD{
 title: String,
}

fn take (dvd: DVD) {
 println!("Owner >> Thanks for the DVD!")
}

fn main () {
 // Null pointer
 let dvd : DVD;
 // COMPILE TIME ERROR <- use of possibly uninitialized variable: `dvd`
 take(dvd);
}

No null pointer derefence situation

7 . 5

Feature::MemSafety

Sir, we have the
DVD you requested!

7 . 6

Feature::MemSafety

Thanks!

7 . 7

Feature::MemSafety

This DVD is not
mine anymore!

7 . 8

Feature::MemSafety
struct DVD{
 title: String,
}

fn take (dvd: DVD) {
 println!("Owner >> I bought {} - it seems awesome!", dvd.title);
}

fn main () {
 let dvd = DVD{title: String::from("Blade Runner")};
 // `dvd` will belongs to `take`
 take(dvd);
 // `dvd` does not exists anymore, as `take` does not exists too, so I can't use it...
 // COMPILE TIME ERROR <- use of moved value: `dvd`
 println!("Me >> I still have {}!", dvd.title);
}

Ownership situation

7 . 9

Feature::MemSafety

I would like to
rent this DVD!

7 . 10

Feature::MemSafety

Sure! Please return to us
this DVD before the end

of the FOSDEM!
7 . 11

Feature::MemSafety

struct DVD{
 title: String,
}

fn borrow (dvd: &DVD) {
 // Access without modifications
 println!("Borrower >> {} is awesome!", dvd.title);
}

fn main () {
 let dvd = DVD{title: String::from("Blade Runner")};
 // `main` is still the owner of `dvd`
 borrow(&dvd);
 println!("Me >> I still have {}!", dvd.title);
}

Borrowing situation

7 . 12

Feature::MemSafety

I couldn't read the
DVD, due to the

protection copy...

7 . 13

Feature::MemSafety

Sorry for that. This is a
DVD copy of the movie.

7 . 14

Feature::MemSafety

Cool, a RW disk - let's
try to modify it...

7 . 15

Feature::MemSafety
struct DVD{
 title: String,
}

fn mut_borrow (dvd: &mut DVD) {
 dvd.title = String::from("Bienvenue chez les Ch'tis");
 println!("Borrower >> Nyark nyark!");
}

fn main () {
 let mut dvd = DVD{title: String::from("Blade Runner")};
 // `main` is still the owner of `dvd`
 mut_borrow(&mut dvd);
 println!("Me >> I still have... WHAT!? WHAT IS {}!?", dvd.title);
}

Mutable Borrowing Situation
7 . 16

Feature::MemSafety

attempt to dereference a null pointer,
attempt to use already-freed memory (ex. dangling pointer),
forget to free memory,
and attempt to free already-freed memory.

Using Rust, you can't:

7 . 17

Feature::MemSafety

But there is rules to respect:
1. the borrower’s scope must not outlast the owner,
2. you can have at least one reference to a resource,
3. you can have one mutable reference to a resource,
4. you can't have the last two rules at the same time.

7 . 18

Feature::ThreadSafety

When does a data race happens?
at least two pointers to the same ressource,
at least one writing pointer,
un-synchronized operations.

7 . 19

Feature::ThreadSafety

How can Rust answers to this problem ?

Ownership (again) because...

if you have multiple references, you don't have any writing
pointer,
if you have one writing pointer, you don't have any other
references,
synchronized operations by default.

7 . 20

Feature::ThreadSafety

read and write the same variable from multiple threads at the
same time (without wrapping it in a lock or other concurrency
primitive),
forget to acquire a lock before accessing the variable it
protects.

Using Rust, you can't:

7 . 21

Feature::ZeroCostAbst

Objective: to combine low-level control with
high-level programming concepts.

7 . 22

Feature::ZeroCostAbst

Developers: "Features are good, abstraction is great, and we
need safety - but we care about overhead..."

Rustaceans: "With Rust, you only pay for the features you
actually use! Rust does not contains a GC, and
performs safety checks at compile time!"

7 . 23

Be productive

Clément Delafargue, Clever Cloud CTO

8 . 1

Cargo
Awesome features,one configuration file !

compile the program,
check the program,
build the doc,
init the project,
run the program,
run unit tests,
run benchmarks,
publish your crate,
install/uninstall crate(s),
etc...

8 . 2

Rustup

https://rustup.rs/

installs Rust from the official release channels,

Objectives:

enabling you to easily switch between stable, beta, and nightly
compilers,
keep the compilers updated,
making cross-compiling simpler.

8 . 3

13,527

8,105 117

297

01/2017

Crates on stock
downloaded

crates (millions)

01/2018

01/2017

01/2018

Be productive

8 . 4

01/2017

01/2018

01/2017

01/2018

Be productive

IDE's friendly:

https://github.com/rust-lang-nursery/rls

RLS, a standard interface for IDEs,
editors and tools to interact with Rust

8 . 5

Community

9 . 1

Community
The Rust compiler, for 50 releases...

4,700 forks,
74,000 commits,
2,000 contributors.

More than 90 Rust User Groups worldwide, in over 35 countries.

Big events in US/Canada (Rust Belt Rust), Europe (Rust Fest), etc...

The community is open to RFCs here: http://rust-lang.github.io/rfcs

9 . 2

Community

Search a meetup/conference or help here: https://community.rs/

What's everyone working on this week:
https://users.rust-lang.org/c/community

Search/find whatever you want about community here:
https://www.rust-lang.org/en-US/community.html

9 . 3

Developer Survey 2015
stackoverflow.com

3rd position

Community

9 . 4

Developer Survey 2016
stackoverflow.com

1st position

Community

9 . 5

Developer Survey 2017
stackoverflow.com

1st position

Community

9 . 6

Rust in production

https://www.rust-lang.org/en-US/friends.html

10 . 1

Rust in production

https://github.com/rust-unofficial/awesome-rust

10 . 2

#Rust2018

https://github.com/rust-lang/rfcs/pull/2314

"We care about your requests."

11

Thank you !

irc.mozilla.org - #rust, #rust-beginners

Forum https://users.rust-lang.org/

https://rust-slack.herokuapp.com/

Rust Book

Rust Official

https://doc.rust-lang.org/book

https://rust-lang.org

12

