
LLVM @ RaincodeLabs
Johan Fabry

Senior Software Engineer

johan@raincode.com - @johanfabry

<Prologue>

Dragons in
the room

What we do

•Raincode Labs provides bespoke compiler services

• The first independent compiler expertise company in
the world

•Consultancy services

• Technical implementation of them

• Full scope: consulting + delivery

Expertise

• Grammar, Languages, Formal Logic and COMPILERS

• .NET

• JVM

• LLVM

• DSLs

• GCC toolchain

• Visual Studio Plugins

• Micro-controllers

Some very smart (re)engineering

Remove Technical Dependencies

• Datakom & Ideal COBOL

• PACBASE

• EGL

• APPBUILDER

• CA Gen/CoolGen

Bespoke Compilers

• PL/I LLVM for LzLABS

• COBOL-IT

• SAGE

Language migration

• Jbasic

Clients

We are under NDA, sorry.

Raincode Labs & Academia

• We cherish academic partnership (McGill,ULB,VUB,Koblenz,UvA, …)

• We sponsor international research events
- Software Language Engineering conference (SLE 2016)

- The Compiler Construction conference (CC 2017, 2018)

- Domain-Specific Modelling summer school (DSM-TP 2017)

- SPLASH conference in 2017, 2018(?) (including SLE)

• We do tutorials and teach
- Sponsored coding dojo at the <Programming> 2017 (VUB) 2018 (U. de Nice)

- Classes on Software Construction, Evolution, … at UvA (2016-2018)

Compilers, Languages and Grammar

</Prologue>

Background

Raincode: Mainframe to .NET

•PL/I compiler, COBOL compiler, ASM 370 compiler
• The three are used together

• Stability and backward compatibility is key!
• External dependencies are of the devil

•We have our own compiler builder infra: YAFL
• Only requirement: C compiler

COBOL code example
**

W-PAD SECTION.

**

MOVE SPACES TO W-PAD-RETURN

MOVE ZERO TO WRK-LENGTH

MOVE SPACES TO WRK-FIELD

MOVE ZERO TO WRK-TRAILING-SPACES

* actual length of W-PAD-VALUE -> WRK-LENGTH

INSPECT FUNCTION REVERSE (W-PAD-VALUE)

TALLYING WRK-TRAILING-SPACES FOR LEADING SPACE

SUBTRACT WRK-TRAILING-SPACES FROM LENGTH OF W-PAD-VALUE

GIVING WRK-LENGTH

IF W-PAD-LENGTH <= WRK-LENGTH

MOVE W-PAD-VALUE TO W-PAD-RETURN

ELSE

(...)

PL/I code example
PROCESS_INPUT_FILE: PROC;

RECORD = '';

OPEN FILE (FILENAME);

CALL X500_READ_FILE;

IF IF = THEN /* OH YES THIS IS VALID */

THEN DO;

ELSE = ELSE + 1;

END;

DO WHILE (SQLCODE = OK);

CALL X100_MAKE_NEXT_RECORD;

CALL X200_WRITE_RECORD_TO_DB(RECORD);

END;

(...)

LLVM Work

What do we have right now?

• PL/I compiler
• 3.5 MY work in total

• ± 75% coverage of the IBM specs (750 pages doc)

• COBOL compiler
• 2 weeks work

• We can do “Hello, World!”

• Quite a lot of shared infrastructure

YAFL

Version 0 : PL/I .NET compiler

Source Custom
Parser

Abstract
Syntax Tree

Types,

X-ref analysis
Tagged AST

Tagged AST
Code

generation
.Net CLR

ASM

Version 1: C generation (± 1MY)

Tagged
AST

gentree
Simple

Tree
Code

generation C code

gentree
• Flatten control flow
• Var resolution (nested scopes)
• …

Issues
• No debug info
• Unclear semantics, e.g. names
• Slow executables
• Too complex

Version 2: LLVM IR (±2.5 MY)

Tagged
AST

gentree
Simple

Tree
LLVM-C

API LLVM IR

LLVM-C API
• Stability! Compatibility!
• C++ API impendence mismatch
• But C API is a second class citizen

• Client requested LLVM
• Thorough rewrite
• + lessons learned from V1

LLVM-C API misses (LLVM 5)

• Debugging info generation: variable metadata
• LLVM-C patches are under review for 6M+ (dead thread)

• Yet C++ API has it

• Go patches were first. They do not compile, so we adapted them

• Mainframe things missing
• Packed decimal (yet DWARF standard: all PL/I & COBOL types)

• Mainframe endianness, IBM floats

• BUT: Character encoding (EBCDIC) works!

Notable

•The tough part is mapping PL/I to LLVM IR

•We use plain vanilla features only
• Stability! Compatibility! No dependencies!

• Upgrade LLVM V4 to V5: Only 3-4 days
•Regenerate our YAFL to LLVM-C API bindings
•Reapply debugging metadata patches

A fun story

Compilation time of a test program
On Win: 30 seconds. On Linux: 12 hours.

Cause: basic block of ± 4.000.000 IR instructions (inlining!)

Origin: calculation of offset of instructions is in linear time
But! Done for all instructions in the block at code generation time

Fix: limit number of instructions in the basic block
But! C API does not provide a count (C++ does)
Solution: generate IR for max 100 nodes in the gentree simple tree

Why difference Win vs Linux? Unknown (2 days work already)

LLVM Coolness

• It just works

•We like the IR: documented, clean, focused

•The ecosystem is broad and very active

LLVM Uncoolness

• LLVM-C API is badly documented
• E.g. who is responsible to free() a string?
• First approach: generate bunch of test programs through the API (3 weeks)
• Now: look at the source code of the API implementation

• Assert fail in the backend: traceback to error in source code is hard
• Essentially a YAFL issue: the mapping is not trivial

• LLVM itself is hard to understand and debug
• As a client, we only look inside when we messed something up
• In the end, complexity and difficulty is to be expected

Conclusions

•We are happy customers of LLVM
•But use just plain vanilla, by design

•LLVM-C could be improved
•But we admit to not submit patches
•Rare in any case
•Process is too heavyweight
•Difficult to justify investment (?)

Future Work

Future work for LzLABS

•PL/I compiler

•COBOL compiler

•Start on the ASM 370 compiler (?)

Rue de la Caserne 45

B-1000 Brussels

Belgium

13245 Atlantic Boulevard.

Suite 4-263

Jacksonville, FL 32225

USA

RAINCODELABS HQ RAINCODELABS USA

+32 2 522 06 63 +1 412.552.8207

info@raincodelabs.com

www.raincodelabs.com

