
1 FEBRUARY 2018 | CONFIDENTIAL

NICOLAI HÄHNLE
FOSDEM 2018

SHADERS IN RADEONSI
DYNAMIC LINKING AND NIR

2 FEBRUARY 2018 | CONFIDENTIAL

NIR IN RADEONSI

3 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

SHADER COMPILATION FLOWS – TODAY’S DEFAULTS
OPEN-SOURCE DRIVERS FOR AMD GPUS

GLSL IR

SPIR-V

GCN Binary

GLSL

TGSI NIR

LLVM IR

LLPC IR

radeonsi only

radv only

AMDVLK only

shared

unused

 Final code generation is shared

 Frontends not shared at all

 NIR originally developed for
Intel driver
‒GLSL IR-to-NIR, SPIR-V-to-NIR

used in i965 and anv, respectively

‒NIR already used by some Gallium
drivers

 LLPC IR = LLVM IR with
additional “intrinsics”

4 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

SHADER COMPILATION FLOWS – THE PLAN
OPEN-SOURCE DRIVERS FOR AMD GPUS

GLSL IR

SPIR-V

GCN Binary

GLSL

NIR

LLVM IR

LLPC IR

radeonsi only

AMDVLK only

shared

 Unified frontend in Mesa

 SPIR-V-to-NIR shared for
ARB_gl_spirv and OpenGL 4.6

5 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Reduce frontend code duplication

 Leverage Vulkan work for ARB_gl_spirv and OpenGL 4.6

 NIR is better suited for representing new features (e.g. 16 bit)

 NIR is suited for code transforms
‒Simplifies driver-specific optimization flows

‒Enables hardware-specific optimization passes (e.g. for gfx9 merged shaders)

WHY NIR?

6 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Very close to feature parity

 Needs performance work

 Enable with R600_DEBUG=nir

 Kudos to Dave Airlie, Bas Nieuwenhuizen, Timothy Arceri, Samuel
Pitoiset

 Future of TGSI?
‒Used by MM, nine, Gallium helpers – ttn (TGSI-to-NIR) helps

‒Used to encode shaders for virtualization (svga, virgl)

STATUS OF NIR IN RADEONSI

7 FEBRUARY 2018 | CONFIDENTIAL

DYNAMICALLY LINKING SHADERS

8 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 LLVM generates a standard ELF object with AMDGPU-specific sections

 Driver combines multiple ELF objects to a single binary
‒Currently ad-hoc: paste .text sections together

‒Goal: support (some) additional sections and real relocations

 Proper dynamic linking should allow:
‒.rodata

‒Explicit description of LDS variables

WHAT AND WHY?

9 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Simple pixel shader: R600_DEBUG=ps glxgears

SHADER PROLOGS AND EPILOGS
AVOIDING RECOMPILE STUTTER

s_mov_b32 m0, s9
v_interp_mov_f32 v0, p0, attr0.x
v_interp_mov_f32 v1, p0, attr0.y
v_interp_mov_f32 v2, p0, attr0.z
v_interp_mov_f32 v3, p0, attr0.w

v_cvt_pkrtz_f16_f32 v0, v0, v1
v_cvt_pkrtz_f16_f32 v1, v2, v3

exp mrt0 v0, v0, v1, v1 done compr vm
s_endpgm

10 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

Load constant input attribute

 Simple pixel shader: R600_DEBUG=ps glxgears

SHADER PROLOGS AND EPILOGS
AVOIDING RECOMPILE STUTTER

s_mov_b32 m0, s9
v_interp_mov_f32 v0, p0, attr0.x
v_interp_mov_f32 v1, p0, attr0.y
v_interp_mov_f32 v2, p0, attr0.z
v_interp_mov_f32 v3, p0, attr0.w

v_cvt_pkrtz_f16_f32 v0, v0, v1
v_cvt_pkrtz_f16_f32 v1, v2, v3

exp mrt0 v0, v0, v1, v1 done compr vm
s_endpgm

 Scalar instructions and registers

 Vector instructions and registers

 Special instructions and registers

Pack into 16-bit floating point values (round to zero)

Export to color buffer and end program

11 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Simple pixel shader: R600_DEBUG=ps glxgears

 Compile the main shader part once, prolog/epilog on demand
‒Much faster than recompiling entire shader on state change

SHADER PROLOGS AND EPILOGS
AVOIDING RECOMPILE STUTTER

s_mov_b32 m0, s9
v_interp_mov_f32 v0, p0, attr0.x
v_interp_mov_f32 v1, p0, attr0.y
v_interp_mov_f32 v2, p0, attr0.z
v_interp_mov_f32 v3, p0, attr0.w

v_cvt_pkrtz_f16_f32 v0, v0, v1
v_cvt_pkrtz_f16_f32 v1, v2, v3

exp mrt0 v0, v0, v1, v1 done compr vm
s_endpgm

Depends only on original GLSL source
“Main shader part”

Depends on the current framebuffer state
“Epilog”

12 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

SHADER STAGES IN THE GRAPHICS PIPELINE

LS

HS

ES

GS

PS

GCN

Hardware

Stages

VS

VS

TCS

TES

GS

PS

API

Stages

VS

PS

VS

PS

GS

Copy

VS

PS

TCS

TES

VS

PS

TCS

TES

GS

Copy

Mapping API to HW stages

LSHS

ESGS

PS

gfx9

Hardware

Stages

VS

13 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Output of vertex shader:
out vec4 a;

out float b[5];

 Input of geometry shader:
in vec4 a[];

in float b[][5];

‒Arrays contain inputs for each vertex of a triangle (or other primitive)

 Transfer data from vertex lanes to primitive lanes
‒Vertex shader stores outputs in Local Data Share (LDS)

‒Geometry shader loads inputs from LDS

VERTEX AND GEOMETRY SHADERS AS MERGED ESGS

14 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Addresses are calculated manually by the frontend

 LLVM is not aware of LDS use
‒Cannot use LDS for spilling (LDS is small, but still…)

‒Cannot use LDS for dynamically indexed arrays
‒Sometimes, LDS might be more convenient than VGPR indirect addressing

‒Difficult to extend LDS use even in the frontend

‒Alias analysis may become less effective

MERGED ESGS: LDS ADDRESSING

v0.attr0.x v0.attr0.y v0.attr0.z v0.attr0.w v0.attr1.x v0.attr1.y v0.attr1.z v0.attr1.w

(gap) v1.attr0.x v1.attr0.y v1.attr0.z v1.attr0.w v1.attr1.x v1.attr1.y v1.attr1.z

v0.attr1.w (gap) v2.attr0.x v2.attr0.y v2.attr0.z v2.attr0.w v2.attr1.x v2.attr1.y

15 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Goal: Explicitly represent all data in LDS

 It’s not that simple for attribute memory (both ESGS and LSHS):
‒Mismatches in the number of attributes (VS produces unused outputs)

‒Number of waves (and thus vertices) per workgroup not known in advance

 MVP: Allow LDS variables in addition to attribute memory
‒Attribute memory is an external variable of unknown size

‒New ELF relocation type for patching LDS instructions

‒Additional instructions required unless attribute memory assumed to be at 0

 Later: Representing attribute memory explicitly?
‒Problem: it’s a two-dimensional array with unknowns in both dimensions

LDS LINKING

16 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Comparatively straightforward – like on CPUs

 Different ABI possibilities:
‒Free 64-bit addresses

‒.rodata restricted to a single 32-bit address space
‒Like the new constant address space for descriptors (Marek Olšák’s patches)

‒.rodata and .text restricted to be in the same 4GB-aligned space
‒Fill in high 32-bits of addresses from PC_HI

.RODATA LINKING

17 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | SHADERS IN RADEONSI

 Switching to NIR in radeonsi is pretty far along

 Explore proper linking of shader parts
‒.rodata

‒Local Data Share

‒What linker should we use?
‒LLD is a natural choice and embeddable, but we really “only” need a dynamic linker

SUMMARY

18 FEBRUARY 2018 | CONFIDENTIAL

19 FEBRUARY 2018 | CONFIDENTIAL

FEBRUARY 2018 | CONFIDENTIAL

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes,
firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION
© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United
States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners. Battlefield 4 images and logos © 2018
Electronic Arts Inc. Battlefield, Battlefield 4 and the DICE logo are trademarks of EA Digital Illusions CE AB. EA and the EA logo are trademarks of Electronic Arts, Inc.

DISCLAIMER & ATTRIBUTION

