AMD¢1

RADEDON

TECHNOLOCGIES GROUP

SHADERS IN RADEONSI
DYNAMIC LINKING AND NIR

NICOLAI HAHNLE
FOSDEM 2018

NIR IN RADEONSI

SHADER COMPILATION FLOWS — TODAY’S DEFAULTS

OPEN-SOURCE DRIVERS FOR AMD GPUS

- radeonsi only

> radv only

AMDVLK only

i

—p shared

—_—p Unused

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONSI

LLPC IR

Final code generation is shared
Frontends not shared at all

NIR originally developed for
Intel driver

—GLSL IR-to-NIR, SPIR-V-to-NIR
used in i965 and anv, respectively

—NIR already used by some Gallium
drivers

LLPC IR = LLVM IR with
additional “intrinsics”

EEEEEEEEEEEEEEEEE

SHADER COMPILATION FLOWS — THE PLAN

OPEN-SOURCE DRIVERS FOR AMD GPUS

—p shared

-

- radeonsi only

AMDVLK only

-

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

LLPC IR

= Unified frontend in Mesa

= SPIR-V-to-NIR shared for
ARB gl spirvand OpenGL 4.6

EEEEEEEEEEEEEEEEE

WHY NIR?

Reduce frontend code duplication
Leverage Vulkan work for ARB_gl spirvand OpenGL 4.6
NIR is better suited for representing new features (e.g. 16 bit)

NIR is suited for code transforms
—Simplifies driver-specific optimization flows
—Enables hardware-specific optimization passes (e.g. for gfx9 merged shaders)

RADEDN

AMDCCU FEBRUARY2018 | SHADERSINRADEONSI o LoLiES GROUP

STATUS OF NIR IN RADEONSI

Very close to feature parity
Needs performance work
Enable with R600_DEBUG=nir

Kudos to Dave Airlie, Bas Nieuwenhuizen, Timothy Arceri, Samuel
Pitoiset

Future of TGSI?

—Used by MM, nine, Gallium helpers — ttn (TGSI-to-NIR) helps
—Used to encode shaders for virtualization (svga, virgl)

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONS| RADEDON

DDDDDDDDDDDDDDDDD

DYNAMICALLY LINKING SHADERS

WHAT AND WHY?

LLVM generates a standard ELF object with AMDGPU-specific sections

Driver combines multiple ELF objects to a single binary
—Currently ad-hoc: paste .text sections together
—Goal: support (some) additional sections and real relocations

Proper dynamic linking should allow:

—.rodata
—Explicit description of LDS variables

AMDCCU FEBRUARY2018 | SHADERSINRADEONSI o LoLiES GROUP

SHADER PROLOGS AND EPILOGS

AVOIDING RECOMPILE STUTTER

Simple pixel shader: R600 _DEBUG=ps glxgears

s_mov_b32 mo, s9

v_interp mov_f32 ve, po, attro.x
v_interp _mov_f32 vl, p9, attro.y
v_interp _mov_f32 v2, po, attre.z
v_interp mov_f32 v3, po, attro.w

v_cvt pkrtz f16 f32 vO, vO, vl
v_cvt pkrtz fl16 32 vi1, v2, v3

exp mrt@ vO, vO, vl, vl done compr vm
s_endpgm

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONS| et

SHADER PROLOGS AND EPILOGS

AVOIDING RECOMPILE STUTTER

Simple pixel shader: R600 _DEBUG=ps glxgears

S _mov_b32 , S9

v_interp mov_f32 ve, po, attre.x

v_interp_mov_f32 vl, po, attro.y Load constant input attribute
v_interp _mov_f32 v2, po, attre.z

v_interp mov_f32 v3, po, attro.w

v_cvt pkrtz 16 f32 vo, vO, vl , , _ .

v_cvt pkrtz £16 €32 vi, v2, v3 Pack into 16-bit floating point values (round to zero)

s_endpgm

vo, vo, vl, vl

Export to color buffer and end program

P Scalar instructions and registers

P Vector instructions and registers

»

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONSI

TECHNOLOCGIES GROUP

SHADER PROLOGS AND EPILOGS

AVOIDING RECOMPILE STUTTER

Simple pixel shader: R600 _DEBUG=ps glxgears

s_mov_b32 mo, s9
v_interp mov_f32 ve, po, attro.x e
v_interp mov f32 vl, po, attre.y Depends only on o”rlglr?al GLSL sourcs
v_interp mov_f32 v2, po, attre.z Main shader part
v_interp mov_f32 v3, po, attro.w
v_cvt pkrtz f16 f32 vO, vO, vl
v_cvt pkrtz fl16 32 vi1, v2, v3
Depends on the current framebuffer state
exp mrt@ vO, vO, vl, vl done compr vm “Epilog™
s_endpgm
Compile the main shader part once, prolog/epilog on demand
—Much faster than recompiling entire shader on state change
RADEDN

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONS|

TECHNOLOCGIES GROUP

SHADER STAGES IN THE GRAPHICS PIPELINE

GCN
API Hardware
Stages Stages

LS

s
s
=
s
__Ps

HS

ES

GS

S

PS

AMDCU FEBRUARY 2018 | SHADERS IN RADEONSI

gfx9

Hardware

Mapping APl to HW stages Stages

TECHNOLOCGIES GROUP

VERTEX AND GEOMETRY SHADERS AS MERGED ESGS

Output of vertex shader:

out vecd a;
out float b[5];

Input of geometry shader:

in vecd a[];
in float b[][5];

—Arrays contain inputs for each vertex of a triangle (or other primitive)

Transfer data from vertex lanes to primitive lanes
—Vertex shader stores outputs in Local Data Share (LDS)
—Geometry shader loads inputs from LDS

AMDCCU FEBRUARY2018 | SHADERSINRADEONSI o LoLiES GROUP

MERGED ESGS: LDS ADDRESSING

= Addresses are calculated manually by the frontend

v0.attr0.x v0.attrO.y v0.attr0.z vO.attrO.w vO.attrl.x vO.attrl.y v0.attrl.z
(gap) v1.attrO.x vl.attrO.y vl1.attrO.z vl.attrO.w vl.attrl.x vl.attrl.y

vO.attrl.w
vl.attrl.z

vO.attrl.w (gap) v2.attr0.x v2.attrO.y v2.attr0.z v2.attrO.w v2.attrl.x

" LLVM is not aware of LDS use
—Cannot use LDS for spilling (LDS is small, but still...)

—Cannot use LDS for dynamically indexed arrays
—Sometimes, LDS might be more convenient than VGPR indirect addressing

—Difficult to extend LDS use even in the frontend
—Alias analysis may become less effective

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONSI

v2.attrl.y

TECHNOLOCGIES GROUP

LDS LINKING

Goal: Explicitly represent all data in LDS

It’s not that simple for attribute memory (both ESGS and LSHS):
—Mismatches in the number of attributes (VS produces unused outputs)
—Number of waves (and thus vertices) per workgroup not known in advance

MVP: Allow LDS variables in addition to attribute memory

—Attribute memory is an external variable of unknown size

—New ELF relocation type for patching LDS instructions

—Additional instructions required unless attribute memory assumed to be at O

Later: Representing attribute memory explicitly?
—Problem: it’s a two-dimensional array with unknowns in both dimensions

RADEDN

AMDCCU FEBRUARY2018 | SHADERSINRADEONSI o LoLiES GROUP

.RODATA LINKING

Comparatively straightforward — like on CPUs

Different ABI possibilities:
—Free 64-bit addresses

—.rodata restricted to a single 32-bit address space
—Like the new constant address space for descriptors (Marek OlSak’s patches)

—.rodata and .text restricted to be in the same 4GB-aligned space
—Fill in high 32-bits of addresses from PC_HI

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONS| RADEDON

DDDDDDDDDDDDDDDDD

SUMMARY

Switching to NIR in radeonsi is pretty far along

Explore proper linking of shader parts
—.rodata

—Local Data Share
—What linker should we use?

—LLD is a natural choice and embeddable, but we really “only” need a dynamic linker

AMDC\ FEBRUARY 2018 | SHADERS IN RADEONS|

DDDDDDDDDDDDDDDDD

THANK YOU

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes,
firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this
information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United
States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners. Battlefield 4 images and logos © 2018
Electronic Arts Inc. Battlefield, Battlefield 4 and the DICE logo are trademarks of EA Digital Illusions CE AB. EA and the EA logo are trademarks of Electronic Arts, Inc.

AMDC\ FEBRUARY 2018 | CONFIDENTIAL =]=]n]=n],}|

TECHNOLOCGIES GROUP

