

Regular Expression Derivatives in
Python

Michael Paddon
mwp@google.com

These slides are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/

Motivation

● I want to generate scanners that have guaranteed
linear performance and understand Unicode.

● Owens, Reppy and Turon[1] describe how regular
expression derivatives may be used to easily
convert a regular expression into a deterministic
finite automaton. They observe that "RE
derivatives have been lost in the sands of time,
and few computer scientists are aware of them".

[1] Owens, S., Reppy, J. and Turon, A., 2009.
Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2), pp.173-190.

https://www.cl.cam.ac.uk/~so294/documents/jfp09.pdf

Refresher: Regular Expressions

∅ null string
ε empty string
a symbol in alphabet Σ
r · s concatenation
r∗ Kleene closure
r + s logical or (alternation)
r & s logical and
¬r complement

Examples:
h · e · l · l · o
(a · b · c) + (1 · 2 · 3)
a · b* · c

Refresher: Deterministic Finite
Automata (DFAs)

● Defined as:
– <states, start, transitions, accepting, error>

Did you know you can take the
derivative of a regular expression?

● It’s simply what’s left after feeding a symbol to an
expression…

∂aa = ε

∂ab = ∅

∂a(a · b) = b

∂a(a*) = a*

∂a(a + b) = ∂aa + ∂ab = ε + = ε∅

● This is called a Brzozowski derivative.
– Invented by Janusz Brzozowski in 1964

More generally...

Helper function ν:

ν(ε) = ε
ν(a) = ∅
ν() = ∅ ∅
ν(r · s) = ν(r) & ν(s)
ν(r + s) = ν(r) + ν(s)
ν(r) = ε∗
ν(r & s) = ν(r) & ν(s)
ν(¬r) = ε, if ν(r) = ∅
ν(¬r) = , if ν(r) = ε∅

If ν(r) = ε, r is nullable

∂
a

 = ∅ ∅
∂

a
ε = ∅

∂
a
a = ε

∂
a
b = ∅

∂
a
(r · s) = ∂

a
r · s + ν(r) · ∂

a
s

∂
a
(r) = ∂∗

a
r · r∗

∂
a
(r + s) = ∂

a
r + ∂

a
s

∂
a
(r & s) = ∂

a
r & ∂

a
s

∂
a
(¬r) = ¬(∂

a
r)

These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined

How is this useful?
start = expr
states = {start}
transitions = {start: {}}

stack = [expr]
while stack:
 state = stack.pop()
 for symbol in alphabet:
 next_state = state.derivative(symbol)

 if next_state not in states:
 states.add(state)
 transitions[state] = []
 stack.append(next_state)

 transitions[state].add((symbol, next_state))

accepts = [state for state in states if state.nullable()]
error = states[∅]

What about large alphabets?

We can calculate derivative classes:

C() = {Σ}
C(S) = {S, Σ \ S}, S Σ⊆
C(r · s) = C(r), if r is not nullable
C(r · s) = C(r) C(s), if r is nullable∧
C(r + s) = C(r) C(s)∧
C(r & s) = C(r) C(s)∧
C(r) = C(r)∗
C(¬r) = C(r)

We only need to take a partial derivative
for each class instead of each symbol.

These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined

For example:
C(a) = {a, Σ \ a}

C(a · b*) = C(a) = {a, Σ \ a}

C(a + b) = C(a) C(b)∧
= {a, Σ \ a} {b, Σ \ b}∧
= { , a, b, Σ \ {a, b}}∅

Now we can handle Unicode
start = expr
states = {start}
transitions = {start: {}}

stack = [expr]
while stack:
 state = stack.pop()
 for dclass in state.derivative_classes():
 symbol = dclass.any_member_symbol()
 next_state = state.derivative(symbol)

 if next_state not in states:
 states.add(state)
 transitions[state] = []
 stack.append(next_state)

 transitions[state].add((symbol, next_state))

accepts = [state for state in states if state.nullable()]
error = states[∅]

Regular Vectors

● We can easily construct a single DFA from a
vector of regular expressions!
– ∂a<r1,...,rn> = <∂ar1,...,∂arn>

– C(r1,...,rn) = ∧C(ri)

● A sequence of regular expressions, each
representing a token, can be reduced to a
single DFA.

Vector rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined

Implementing in Python

● How do we represent large sets of symbols?
● How do we represent expressions?
● How do we compare expressions for equality?
● How do we build a scanner from a DFA?

Large Sets of Symbols

● Represent as ordered disjoint intervals of codepoints
– e.g. [A-Za-z0-9] → ((48, 57), (65, 90), (97, 122))
– Testing membership using bisect() is O(log N).
– Union, intersection, difference is O(N)

● Tempting to subclass collections.abc.Set() to present a set
of integers.
– But want to support sets of symbol sets → need hash()
– All sets with the same members should hash to the same value
– The standard hash requires iterating over each member
– Subclass tuple instead with set-like methods.

Expression Class Hierarchy

Expression
derivative(symbol)
derivative_class()
nullable()

SymbolSet

KleeneClosure

Complement

LogicalAnd

LogicalOr

Epsilon

Concatenate

Expression Trees

SymbolSet
((65, 90), (97, 122))

Concatenation

KleeneClosure

SymbolSet
((65, 90), (97, 122))

[A-Za-z] · [A-Za-z]* =

Expression Equality

● Use __new__() as a smart constructor for weak
equivalence form which has a total ordering:

r & r ≈ r
r & s ≈ s & r
(r & s) & t ≈ r & (s & t)

 ∅ & r ≈ ∅
¬ & r ≈ r∅
(r · s) · t ≈ r · (s · t)

 ∅ · r ≈ ∅
r · ≈ ∅ ∅
ε · r ≈ r
r · ε ≈ r

r + r ≈ r
r + s ≈ s + r
(r + s) + t ≈ r + (s + t)
¬ + r ≈ ¬∅ ∅

 ∅ + r ≈ r
(r) ≈ r∗ ∗ ∗
ε ≈ ε∗

 ≈ ∅∗ ε
¬(¬r) ≈ r

These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined

Smart Constructor Example
 class Concatenation(Expression):
 def __new__(cls, left, right):
 if isinstance(left, Concatenation):
 left, right = left._left,
 Concatenation(left._right, right)

 if left == cls.NULL:
 return left
 elif right == cls.NULL:
 return right
 elif left == cls.EPSILON:
 return right
 elif right == cls.EPSILON:
 return left

 self = super().__new__(cls)
 self._left = left
 self._right = right
 return self

Building a Scanner

state = start
match = None
for symbol in text:

if state in accepts:
match = state
position = current_position()

state = transition[state][symbol]
if state == error:

 if match:
yield match
rewind_to(position)
state = start

if match:
yield match

Simple Example

Input looks like a configparser file:

[example]
_letter = [_A-Za-z]
_digit = [0-9]
identifier = <_letter>

(<_letter>|<_digit>)*
number = <_digit>+
operator = [-+*/=]
other = .

Resulting DFA

Pascal Lexer

● A larger example:
– https://github.com/bonzini/flex/blob/master/example

s/manual/pascal.lex
– 51 expressions/tokens
– flex → 174 states
– Implemented in epsilon → 169 states

https://github.com/bonzini/flex/blob/master/examples/manual/pascal.lex
https://github.com/bonzini/flex/blob/master/examples/manual/pascal.lex

εpsilon

● Supports rich expression syntax:
– Operators: (), [], !, &, |, ?, *, +, {count}, {min, max}
– Escapes: mostly perlre compatible, including Unicode classes

● Designed to generate code for multiple targets
– Currently Python and Dot

● Not done yet:
– Start conditions, more targets including C

● Code at https://github.com/MichaelPaddon/epsilon
– Beta testers and contributors welcome!

https://github.com/MichaelPaddon/epsilon

Acknowledgements

● epsilon was inspired by and directly based on
the work of Owens, Reppy, and Turon

● Without the groundbreaking work of Janusz
Brzozowski, none of this would be possible.

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

