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Motivation

● I want to generate scanners that have guaranteed 
linear performance and understand Unicode.

● Owens, Reppy and Turon[1] describe how regular 
expression derivatives may be used to easily 
convert a regular expression into a deterministic 
finite automaton. They observe that "RE 
derivatives have been lost in the sands of time, 
and few computer scientists are aware of them".

[1] Owens, S., Reppy, J. and Turon, A., 2009.
Regular-expression derivatives re-examined.
Journal of Functional Programming, 19(2), pp.173-190.

https://www.cl.cam.ac.uk/~so294/documents/jfp09.pdf


  

Refresher: Regular Expressions

∅ null string
ε empty string
a symbol in alphabet Σ
r · s concatenation
r∗ Kleene closure
r + s logical or (alternation)
r & s logical and
¬r complement

Examples:
h · e · l · l · o
(a · b · c) + (1 · 2 · 3)
a · b* · c



  

Refresher: Deterministic Finite 
Automata (DFAs)

● Defined as:
– <states, start, transitions, accepting, error>



  

Did you know you can take the 
derivative of a regular expression? 

● It’s simply what’s left after feeding a symbol to an 
expression…

∂aa = ε

∂ab = ∅

∂a(a · b) = b

∂a(a*) = a*

∂a(a + b) = ∂aa + ∂ab = ε +  = ε∅

● This is called a Brzozowski derivative.
– Invented by Janusz Brzozowski in 1964



  

More generally...

Helper function ν:

ν(ε) = ε
ν(a) = ∅
ν( ) = ∅ ∅
ν(r · s) = ν(r) & ν(s)
ν(r + s) = ν(r) + ν(s)
ν(r ) = ε∗
ν(r & s) = ν(r) & ν(s)
ν(¬r) = ε, if ν(r) = ∅
ν(¬r) = , if ν(r) = ε∅

If ν(r) = ε, r is nullable
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These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined



  

How is this useful?
start = expr
states = {start}
transitions = {start: {}}

stack = [expr]
while stack:
    state = stack.pop()
    for symbol in alphabet:
        next_state = state.derivative(symbol)

        if next_state not in states:
            states.add(state)
            transitions[state] = []
            stack.append(next_state)
            
        transitions[state].add((symbol, next_state))

accepts = [state for state in states if state.nullable()]
error = states[∅]



  

What about large alphabets?

We can calculate derivative classes:
 

C() = {Σ}
C(S) = {S, Σ \ S}, S  Σ⊆
C(r · s) = C(r), if r is not nullable
C(r · s) = C(r)  C(s), if r is nullable∧
C(r + s) = C(r)  C(s)∧
C(r & s) = C(r)  C(s)∧
C(r ) = C(r)∗
C(¬r) = C(r)

We only need to take a partial derivative 
for each class instead of each symbol.

These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined

For example:
C(a) = {a, Σ \ a}

C(a · b*) = C(a) = {a, Σ \ a}

C(a + b) = C(a)  C(b)∧
= {a, Σ \ a}  {b, Σ \ b}∧
= { , a, b, Σ \ {a, b}}∅



  

Now we can handle Unicode
start = expr
states = {start}
transitions = {start: {}}

stack = [expr]
while stack:
    state = stack.pop()
    for dclass in state.derivative_classes():
        symbol = dclass.any_member_symbol()
        next_state = state.derivative(symbol)

        if next_state not in states:
            states.add(state)
            transitions[state] = []
            stack.append(next_state)
            
        transitions[state].add((symbol, next_state))

accepts = [state for state in states if state.nullable()]
error = states[∅]



  

Regular Vectors

● We can easily construct a single DFA from a 
vector of regular expressions!
– ∂a<r1,...,rn> = <∂ar1,...,∂arn>

– C(r1,...,rn) = ∧C(ri)

● A sequence of regular expressions, each 
representing a token, can be reduced to a 
single DFA. 

Vector rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined



  

Implementing in Python

● How do we represent large sets of symbols?
● How do we represent expressions?
● How do we compare expressions for equality?
● How do we build a scanner from a DFA?



  

Large Sets of Symbols

● Represent as ordered disjoint intervals of codepoints
– e.g. [A-Za-z0-9] → ((48, 57), (65, 90), (97, 122))
– Testing membership using bisect() is O(log N).
– Union, intersection, difference is O(N)

● Tempting to subclass collections.abc.Set() to present a set 
of integers.
– But want to support sets of symbol sets → need hash()
– All sets with the same members should hash to the same value
– The standard hash requires iterating over each member
– Subclass tuple instead with set-like methods.



  

Expression Class Hierarchy

Expression
derivative(symbol)
derivative_class()
nullable()

SymbolSet

KleeneClosure

Complement

LogicalAnd

LogicalOr

Epsilon

Concatenate



  

Expression Trees

SymbolSet
((65, 90), (97, 122))

Concatenation

KleeneClosure

SymbolSet
((65, 90), (97, 122))

[A-Za-z] · [A-Za-z]* = 



  

Expression Equality

● Use __new__() as a smart constructor for weak 
equivalence form which has a total ordering:

r & r ≈ r
r & s ≈ s & r
(r & s) & t ≈ r & (s & t)

 ∅ & r ≈ ∅
¬  & r ≈ r∅
(r · s) · t ≈ r · (s · t)

 ∅ · r ≈ ∅
r ·  ≈ ∅ ∅
ε · r ≈ r
r · ε ≈ r

r + r ≈ r
r + s ≈ s + r
(r + s) + t ≈ r + (s + t)
¬  + r ≈ ¬∅ ∅

 ∅ + r ≈ r
(r )  ≈ r∗ ∗ ∗
ε  ≈ ε∗

 ≈ ∅∗ ε
¬(¬r) ≈ r

These rules taken from Owens, S., Reppy, J. and Turon, A.,
Regular-expression derivatives re-examined



  

Smart Constructor Example
    class Concatenation(Expression):
        def __new__(cls, left, right):
            if isinstance(left, Concatenation):
                left, right = left._left,
                    Concatenation(left._right, right)
    
            if left == cls.NULL:
                return left
            elif right == cls.NULL:
                return right
            elif left == cls.EPSILON:
                return right
            elif right == cls.EPSILON:
                return left
    
            self = super().__new__(cls)
            self._left = left
            self._right = right
            return self



  

Building a Scanner

state = start
match = None
for symbol in text:

if state in accepts:
match = state
position = current_position()

state = transition[state][symbol]
if state == error:

 if match:
yield match
rewind_to(position)
state = start

if match:
yield match



  

Simple Example

Input looks like a configparser file:

[example]
_letter = [_A-Za-z]
_digit = [0-9]
identifier = <_letter>

(<_letter>|<_digit>)*
number = <_digit>+
operator = [-+*/=]
other = .



  

Resulting DFA



  

Pascal Lexer

● A larger example:
– https://github.com/bonzini/flex/blob/master/example

s/manual/pascal.lex
– 51 expressions/tokens
– flex → 174 states
– Implemented in epsilon → 169 states

https://github.com/bonzini/flex/blob/master/examples/manual/pascal.lex
https://github.com/bonzini/flex/blob/master/examples/manual/pascal.lex


  

εpsilon

● Supports rich expression syntax:
– Operators: (), [], !, &, |, ?, *, +, {count}, {min, max}
– Escapes: mostly perlre compatible, including Unicode classes

● Designed to generate code for multiple targets
– Currently Python and Dot

● Not done yet:
– Start conditions, more targets including C

● Code at https://github.com/MichaelPaddon/epsilon
– Beta testers and contributors welcome!

https://github.com/MichaelPaddon/epsilon
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Thanks!
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