

FOSDEM 2018, Brussels

Victor Stinner

vstinner@redhat.com

Python 3
10 years later

CPython core developer since 2010

Work on CPython and OpenStack
for Red Hat

Very happy user of Fedora and vim!

Victor Stinner

 Autumn

2006: PEP 3000 “Python 3000”

Fix "Python warts":

long vs int; new class vs old class

int vs foat division

Unicode mess

Comparisons

Relative imports

Birth of Python 3000

Don't break everything, only
acknowledged warts

Have an open community process
for deciding what to change

Don't reimplement the interpreter
from scratch

Plan end of life for Python 2

Risk management

 2008: Python 3.0 released

Run 2to3 to port your whole code
base at once: you're done! …

Drop Python 2 is a no-go, modules
authors care of Python 2 users!

All dependencies must be Python 3
compatible

Python 2.7 was heavily used in
production

First migration plan

– Why should I let you work on
Python 3 support?

– For all these new cool Python 3
features!

– Can we use these features?

– Well.... since we still have to
support Python 2... no

Technical debt

Some projects were forked to add
Python 3 support.

Same upstream, two names:
dnspython → dnspython3

Community fork:
PIL → Pillow

Upstream does not reply:
MySQL-python → mysqlclient

Two branches in Git?

Python 2.6 was the stable version
when 3.0 was released

It requires unittest2 and more
backports

It requires heavy usage of the six
module

Python 3.2 requires six.u("unicode");
u"unicode" is a syntax error

Python 2.6 and 3.2

 Winter

2011: “an
attempt at
motivating

package
maintainers

to port to
python 3”

Heavy usage of
bytes

Big Python 2 projects

Twisted

Incomplete
Unicode support

Python 3 doesn’t bring anything

Python 3 introduces new Unicode
issues

Using bytes is simpler

Python 3 trolls

Python 2.7 is alive: let’s continue the
development!

2014: LWN article “Debating a
"transitional" Python 2.8”

“concerns that Python 3
would never take of”

“Python 3 represents
under 2% of package”

Python 2.8 idea

2011: PEP 404 (“PEP not found ;-)”)
“Python 2.8 Un-release Schedule”

2013: 39 of top 50 projects supports
Python 3 (80%)

2014: Python 2.7
end of life extended
by 5 years to 2020

No Python 2.8!

 Spring

“How to install a dependency?”
“How to install setuptools?”

2011: pip 1.0 released

2014: Python 2.7.9 and 3.4
now come with ensurepip

pip: defacto installer

Linux distros with pip

Problem #1 solved!

Stop promoting 2to3: don’t remove
Python 2 support

Add Python 3 support

New tools like modernize and sixer

Incremental changes tested by a CI

New approach

For legacy code bases: frst add new
tests to reduce the risk of
regression

Dropbox is working on mypy and
typing to annotate types in their
large code base

Large code base

Building bridges
2012: Python 3.3 reintroduces
u"unicode"

2015: Python 3.5 adds bytes % args
(PEP 461)

More py3k warnings added to
Python 2.7

More 2.7 backports: unittest2,
enum34, …

 Summer

2011: 9% :-(
(18/200)

2018: 95% :-)
(190/200)

Results normalized to Python 2.7

lower = faster

3.6 faster than 2.7

 Lisa Guo and Hui Ding Keynote

Backward compatibility prevents to
fx Python 2.7 bugs:

Unicode support

Hash not randomized by default

subprocess is not thread safe

threading.RLock is not signal safe

Internal clocks are not monotonic

Python 2.7 WONTFIX

3.3: time.monotonic() (PEP 418)

3.4: fle descriptors non-inheritable,
fork+exec safety (PEP 446)

3.5: retry syscalls on EINTR (PEP 475)

“We are aware of the code breakage
this is likely to cause, and doing it
anyway for the good of mankind.” –
Guido van Rossum PEP 446 approval

Fixed in Python 3

asyncio, concurrent.futures,
contextvars, dataclasses, enum,
ensurepip, faulthandler, importlib,
importlib.resources, ipaddress, lzma,
pathlib, secrets, selectors, statistics,
tkinter.ttk, tracemalloc,
typing, unittest.mock,
venv, zipapp

 � 21 new modules �

2.7 → 3.7 new modules

>>> name = "world"; print(f"Hello {name}!")
Hello world!

>>> print(f"Hello {name.title()}!")
Hello World!

>>> x = 1; y = 2; print(f"{x} + {y} = {x + y}")
1 + 2 = 3

>>> msg = f"{1+2}"; print(msg)
3

f-string (PEP 498)

def generator():
 yield from range(5)

async def coroutine():
 return await async_read()

async def async_generator():
 yield …

[… async for it in async_gen()]
[await func() for func in funcs()]

Python 3 coroutines

def func(arg, *, kw_only=None): …

print(msg, file=sys.stderr, end=’’)

one, *tail = range(5)
cmd = ['python3', *args, 'script.py']
mydict = {"key": "value", **other_dict}

New Python 3 syntax

million = 1_000_000

x: int = 5

with open(…) as infp, open(…) as outfp: …

bytes % args

matrix_multiplication = a @ b

New Python 3 syntax

Fedora 23 (2015), Ubuntu 17.10 (2017):
no python2 in the base system

python3statement.org

pythonclock.org

2017: IPython 6.0
and Django 2
are Python 3 only

Bury Python 2?

Python 4?

Questions?

Autumn:
https://www.fickr.com/photos/visualpanic/3035384225/

Winter:
https://www.fickr.com/photos/41848869@N04/8511091
946/

Spring:
https://www.fickr.com/photos/kubina/448485266/

Summer:
https://www.fickr.com/photos/freaky_designz/14385194
484/

Red Hat and Python are registered trademarks.

Sources, copyrights

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

