
 ProxySQL's Internals
Implementation details on handling millions of
connections and thousands of servers

What is ProxySQL?

A "Layer 7" database proxy

MySQL / ClickHouse protocol
aware

High Performance

High Availability

Architecture Overview

Clients connect to ProxySQL

Requests are evaluated

Actions are performed

High Performance
Maximize throughput

Reduce latency

Scale

>> Built to handle hundreds of thousands of connections

>> Built to handle thousands of backend servers

Threading Models
One thread per connection

Easier to develop

Blocking I/O

Thread pooling

Non blocking I/O

Scalable

Common Thread Pool
Implementations

One thread accepts connections

Connections are passed to worker threads

One or more threads perform network I/O

I/O queuing occurs

Fixed or dynamic number of worker threads

ProxySQL's Thread Pool
Implementation

Threads in ProxySQL are known as "MySQL Threads"

Fixed number of worker threads (configurable)

All threads listen on the same port(s)

Client connections are not sharded between threads

All threads perform their own network I/O

Uses "poll()"... (does it scale?)

Threads never share client
connections

Pros:

Thread contention is reduced

No need for synchronization

Each thread calls "poll()"

Cons:

Possibly imbalanced load

Thread 1

Thread 2

Thread 3

poll() vs. epoll()
"poll()" is O(N)

"epoll()" is O(1)

"epoll()" scales better than "poll()"

Why does ProxySQL use "poll()"?

It is faster than "epoll()" for fewer connections (~1000)

Performance degrades when there are a lot of connections

ProxySQL Auxiliary Threads

Each worker thread has an auxiliary thread

Worker thread uses "poll()"

Auxiliary thread uses "epoll()"

Worker thread passes idle connections to auxiliary thread

When a connections becomes active auxiliary thread
passes connection to the worker thread

Solution scales to 1 million connections

Thread 1

Aux 1

Thread 2

Aux 2

Thread 3

Aux 3

MySQL Threads Handler

MySQL Thread

MySQL Thread

MySQL Thread

MySQL Thread

MySQL Threads
HandlerAdmin

Statistics

MySQL_Threads_Handler()
A set of functions to simultaneously control the MySQL Threads, for example:

Starting threads

Stopping threads

Getting metrics by atomic operations

Getting metrics by locking

Used mostly by ProxySQL Admin and ProxySQL Statistics modules

MySQL Thread Overview

MySQL Session

MySQL Session

MySQL Session

MySQL Session

MySQL Thread

MySQL Session

MySQL Session

All other Modules:
• Query Processor
• Query Cache
• Hostgroups Manager
• Authentication
• Others

* Every object has a pointer to its parent

MySQL_Thread()
Represent a worker thread

Accepts new connections and creates MySQL Sessions

Processes MySQL Sessions

Performs network I/O

Interacts with other modules: Admin, Authentication, Query Cache, Query
Processor, Connection Pool, Hostgroups Manager, Prepared Stmt.
Manager, etc.

MySQL_Thread()

For low contention, threads independently:

Track internal metrics

Store values for mysql-XXX variables

Store a copy of the defined query rules

MySQL_Session()
Represents a client connection / session

Created when a client connects to ProxySQL

Implemented as a state machine

Stores metadata associated with the client session:

Running timers

Transaction persistence

Mirroring

Default Hostgroup, etc.

A "virtual / internal" session can also be created for pinging backends and mirroring traffic

MySQL_Data_Stream()
Abstraction on top of the network socket

Reads data from network and generate packets

Converts packets into data to be written into sockets

Transparently handles compression, encryption and decryption

Mostly useful for frontend connection

Used for backends in versions prior to the introduction of the MariaDB Client Library

Also used for backend connection in fast forward mode

MySQL_Protocol()
Associated with a MySQL_Data_Stream

Generates packets to be sent to the client:

Handshake packets

OK, ERR, EOF packets

Resultset (rows, fields, etc)

PREPARE_RESPONSE

Also performs input validation

MySQL Connection

Stores metadata related to a MySQL connection -
MySQL_Connection_userinfo():

username, schema name, current schema, time_zone, sql_mode,
autocommit, statuses, etc.

For backend connections it is also a wrapper to all the functions of the
MariaDB Client Library

MySQL Session Overview

Every object has a pointer to its parent

Data Stream ProtocolConnection

MySQL Session

Connection Data Stream

MYSQL

HG

Connection Data Stream

MYSQL

HG

Connection Data Stream

MYSQL

HG

UI

UI UI UI

MySQL_Hostgroups_Manager()
Manages hostgroups, servers and connections

Used by MySQL_Threads, MySQL_Connection, Admin, MySQL_Monitor and
Statistics to:

Get or return connections

Get the status of servers

Reconfigure hostgroups and servers

Get or set metrics

MySQL_Hostgroups_Manager()
MyHGC 1 MyHGC 2 MyHGC 3 MyHGC n

MyHGM

MySQL_Thread

Admin

Monitor

MySrvC 1

MySrvC 2

MySrvC 3

MySrvC 4

MySrvC 1

MySrvC 2

MySrvC 3

MySrvC 1

MySrvC 2

MySrvC 3

MySrvC 4

MySrvC 5

MySrvC 6

MySrvC 1

MySrvC 2

MySrvC() - MySQL Server

MySrvC

Conn 3

Conn 9

ConnectionsUsed ConnectionsFree

Conn 5

Conn 2

Conn 6

Conn 7

Conn 1

Conn 4

Conn 8

MyHGC

Get Connection
Identify hostgroup

Get a random server based on weight

Get a random connection from ConnectionsFree

Move the connection to ConnectionsUsed

Attach the connection to MySQL_Data_Stream

If a no connections exist yet then a new MySQL Connection object is created without
a socket connection. MySQL Thread will then establish a new socket connection

Return Connection

Detach the connection from MySQL Data Stream

The pointer to MySrvC allows to immediately return the connection to the
right server

Find the connection in ConnectionsUsed and move it to ConnectionsFree

Contention on MyHGM

MyHGM is a shared resource so it can cause contention when accessed
by MySQL Threads

MySQL_ThreadMySQL_Thread

MyHGM

Thread Connection Cache

Each MySQL Thread has a connection cache that is reset before calling
poll()

MySQL_ThreadMySQL_Thread

MyHGMConnections
Cache

Connections
Cache

Thank you!

Please remember to report feature requests and bug reports: https://
github.com/sysown/proxysql/

Community support can be found on our forum: https://
groups.google.com/forum/#!forum/proxysql

Useful blog articles are available at our site: http://proxysql.com/blog

Visit us at http://proxysql.com/support for subscription and support options

https://github.com/sysown/proxysql/
https://github.com/sysown/proxysql/
https://groups.google.com/forum/#!forum/proxysql
https://groups.google.com/forum/#!forum/proxysql
http://proxysql.com/blog
http://proxysql.com/support

