
ProxySQL - GTID Consistent Reads
Adaptive query routing based on GTID tracking

Introduction

Rene Cannao

• Founder of ProxySQL

• MySQL DBA

Introduction

Nick Vyzas

• ProxySQL Committer

• MySQL DBA

What is ProxySQL?

• A "Layer 7" database proxy

• MySQL / ClickHouse protocol aware

• High Performance

• High Availability

• Feature Rich

Architecture Overview

• Clients connect to ProxySQL

• Requests are evaluated

• Actions are performed

Master - Slave Replication
• Asynchronous replication

• Replication lag is the major challenge

• Semi-synchronous replication

• Completion time for a transaction depends on availability of
slave(s)

• The time taken to complete the transaction can still cause
stale data

• To avoid stale data applications / client connections must be
aware if there is replication delay

Application Read / Write Split

Application Read / Write Split

Application Read / Write Split

Application Read / Write Split

Application Read / Write Split

Stale data received :`(

ProxSQL Read / Write Split

Benefits of ProxySQL's 
Read / Write Split

• Query rules defined in ProxySQL can dynamically
route queries to READER or WRITER hostgroups

• Seamless for an application connecting and no
application changes are required

• All traffic is served from a single listening port

• Slaves can be dynamically added / removed from a
hostgroup to scale or perform maintenance

ProxSQL Read / Write Split

ProxySQL routes
data

ProxSQL Read / Write Split

Stale data issue  
still not solved :(

ProxySQL routes
data

Challenges of R/W Split

• Susceptible to service stale data due to replication lag

• Replication lag is monitored and the reads can be
routed to the master if a threshold is breached

• Threshold is configurable in increments of 1 second

• Replication lag is determined by polling at regular
intervals

Traditional binlog replication
• Traditional replication requires master & slave binary

log file / position to be 100% synchronized

• Binary log events must be processed sequentially

• Binary log events can be missed or re-executed if
replication is started from the wrong binlog file /
position

• During failover replication must be stopped at the same
position on all slaves to ensure data consistency after
promotion

What is GTID?
• GTID is an acronym for "global transaction identifier"

• Unique identifier for every committed transaction

• GTID is unique across all servers in a master / slave
cluster

• 1-to-1 mapping between all transactions and all GTIDs

• Represented as a colon separated pair of coordinates: 
 
 GTID = source_id:transaction_id

Why is GTID important?
• GTID guarantees consistency by detecting missing transactions from

the set of GTIDs executed on a slave

• Supports auto-positioning making failover simpler, safer and quicker as
slaves can be repointed to masters at any level of the a replication
hierarchy

• SELECT WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS() was introduced in
5.6.9 obsoleting WAIT_FOR_EXECUTED_GTID_SET() from MySQL 5.6.5.

• Allows "SELECT" to wait until all GTIDs in a specified set have
executed

• You need to have the GTID prior to executing

• Better approach however queries may be delayed

An important enhancement
in MySQL 5.7

• In MySQL 5.7 & Percona Server 5.7 an important feature was
added which allows sending the GTID for a transaction on
the OK packet for a transaction

• Enabled explicitly by setting --session-track-gtids to
one of the following values:

• "OWN_GTID": collect GTIDs generated for committed R/W
transactions

• "ALL_GTIDS": collect ALL GTIDs in gtid_executed when a
R/W or R/O transaction commits

• Note: This feature is NOT available in MariaDB

Leveraging GTID tracking in
ProxySQL...

• Since GTIDs can be tracked on client connections... why not track
these in ProxySQL as well?

• Tracking the GTIDs executed on a MySQL server can be done in one
of two ways:

• pull method: ProxySQL can query each MySQL server to fetch the
last executed GTID

• push method: Parse the binlog events "as a slave" and send the
GTIDs processed to ProxySQL

• The "push method" is far more efficient and results in less requests
and lower latency

• Especially important in large scale deployments

ProxySQL Binlog Reader

• A lightweight process that runs on the MySQL server

• Primary task is to provide GTID information about a
MySQL server to all connected ProxySQL instances

• Designed to be robust and efficient while keeping CPU
and network I/O to an absolute minimum

• Features an auto-restart mechanism in case of failure
and a client side reconnect

ProxySQL Binlog Reader

ProxySQL Binlog Reader

How does ProxySQL achieve
GTID R/W Consistency?

• ProxySQL can be configured to enforce GTID consistency
for reads on any hostgroup / replication hostgroup

• The hostgroup will ensure that any subsequent DQL:

• Will be routed only to hosts which have executed the
previous transaction's GTID for the connection

• Since the MASTER host will be part of the hostgroup /
READER replication hostgroup (with a lower weight)
there is always a node available to serve the DQL
statement

GTID R/W Consistency Flow

GTID R/W Consistency Flow

GTID R/W Consistency Flow

GTID R/W Consistency Flow

GTID R/W Consistency Flow

Supported Replication Models
• Master - Slave:

• Asynchronous Replication

• Semi-Synchronous Replication

• Multi - Master:

• InnoDB Cluster / Group Replication

• Additional requirements:

• GTID is required for all servers in the hostgroup which routes GTID
consistent queries

• The binlog_format must be configured to ROW 
 

What time is it?

Thank you!

• Please remember to report feature requests and bug
reports: https://github.com/sysown/proxysql/

• Community support can be found on our forum:
https://groups.google.com/forum/#!forum/proxysql

• Useful blog articles are available at our site: http://
proxysql.com/blog

• Visit us at http://proxysql.com/support for subscription
and support options

