

An Open Platform for Collecting Data for OpenSeaMap Ulrich Langenbach, Joachim Langenbach 03.02.2018

Overview

- Motivation
- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Status and Next Steps
- Wrap-Up

2

What is a nautical chart?

3

This is a nautical chart

Overview

Motivation

- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Status and Next Steps
- Wrap-Up

5

Motivation: Examples of Nautic Charts

OpenSeaMap

NV

Motivation: Example Lake Schwerin

Target: More detailed depth maps

8

Target: More detailed depth maps

9

Overview

- Motivation
- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Steps
- Wrap-Up

Current Data Collection Path of OpenSeaMap

11

Data Collection

- Open Source Projects
 - OpenSeaMap HW Logger (NMEA0183)
 - Raspberry Pi Logger (NMEA2000)
 - GNUBoat (NMEA2000)
 - **Proprietary Solutions**
 - iKommunicate
 - Voyage Recorder
 - Plotter

Raspberry Pi Logger

Overview

- Motivation
- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Status and Next Steps
- Wrap-Up

GNUBoat Requirements

- Tight integration
- Compact design
- Easy usability => most users are boat people, not hackers!
 - Secure and safe Operation
 - Fully automated data collection
 - At least partially automated data upload
 - Easy data transfer via WLAN, USB, Ethernet to users host
 - Upload to OpenSeaMap servers for post processing and visualisation
 - Possibly autonomous data transfer to OpenSeaMap servers?
- OpenSource design for later adaption due to boat network advances, etc.
- Adding more sensors for better compensation of boat movement (tilt, roll, pitch)

GNUBoat Additional Features / Services

- Mooring
 - Weather Condition and Swell Monitoring
 - Position and Drift Monitoring
 - Alarm or push messages
- Turn plot creation
- Internet access point / firewall within marina WLANs
- Battery Health Monitoring => Power is a crucial resource on a boat!

GNUBoat Challenges

- Automotive Grade Power Supply for powered boats
 - Complex EMI conditions with RX & TX RF signals
 - Engine starter EMI / undervoltage and overshoot conditions
 - Generator ripple
 - Ground shifts
 - Delayed power-off to safely switch off devices without data corruption
- Battery backed stand-alone operation for sailors without power supply
 - Needs to supply all sensors, including echo sounder (pulsed power load ~ 2 Hz)
- CAN interface decoupling (EMI/ESD/...)
- Multiple sensors integrated into one node

GNUBoat Power Supply Challenge

http://m.littelfuse.com/~/media/electronics/application_notes/littelfuse_tvs_diode_automotive_circuit_p rotection_using_automotive_tvs_diodes_application_note.pdf.pdf

GNUBoat Power Supply Block Diagram

Remote Sensors Local Interfaces

Local Sensors

Raspberry Pi

GNUBoat device selection (1)

- Single Board Computer: Raspberry Pi
 - Widely used and good availability
 - Established OS distribution
 - Supported by a lot of libraries / projects
 - Highly active community
 - Highest probability for reuse of the development
- CAN Interface: MCP2515 SPI-CAN interface / MCP2562 (CAN transceiver)
 - Widely used, e.g. PICAN2
 - Well understood
 - Good availability

GNUBoat device selection (2)

- Barometric Sensor: MPL3115A2
 - Reasonable accuracy (0.5 m)
 - Good availability
 - Prototyping via sparkfun breakout
- GPS: TBD (possibly sparkfun Venus or XA1110 breakouts)
 - Use breakout module => no RF PCB design needed
 - Needs external antenna connector due to housing and mounting position
- 9DOF IMU: TBD (possibly LSM9DS1)
 - Fully integrated system in package
 - Good availability
 - Prototyping via sparkfun breakout

GNUBoat device selection (3)

- USB WLAN interface
 - Good driver support
 - HostAPD support

Overview

- Motivation
- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Status and Next Steps
- Wrap-Up

GNUBoat Prototype Hardware

GNUBoat Prototype Hardware

An Open Platform for Collecting Data for OpenSeaMap - FOSDEM 2018 Brussels, Langenbach

Puppet Configuration

GNUBoat Project Next Steps

- Running Demo
 - Prototype hardware vailable
 - Software stack for prototype components available
 - Continues integration infrastructure and configuration management setup
- Block diagram level planning done
- Power supply planning in progress
- External module for battery health monitor schematic started
 - CAN interface reference
 - Power supply filter
 - Design reference and testing
- Due to daytime job implications looking for support!
 - Schematic and PCB design, mechanics, ...

Overview

- Motivation
- What needs to be done?
 - Data Collection
 - Data Processing
- Hardware Setup
 - Requirements and Features
 - Block Diagram
 - Device Selection
- Project Status and Next Steps
- Wrap-Up

GNUBoat Wrap-Up

- GNUBoat aims at providing an open nautic data collection platform
 - Real world applicable
 - Testing may be done with small prototypes
 - Deployment on real yachts
- GNUBoat wants to help create better charts

Thank you very much! Have fair winds and following seas! **Contact: info@engsas.de** Web: https://trac.engsas.de/gnuboat/