
Optimizing SDS for
the Age of Flash
Krutika Dhananjay, Raghavendra
Gowdappa, Manoj Pillai @Red Hat

Agenda
● Introduction and Problem Statement
● Gluster overview
● Description of Enhancements
● Lessons Learned
● Work in Progress

Introduction
● Gluster’s traditional strength: sequential I/O workloads
● New Trends

○ SSDs popularity, particularly for random I/O
workloads
■ IOPS capabilities way higher than HDDs

○ Gluster integration with KVM and Kubernetes
■ New workloads including IOPS-centric ones

● Need to ensure that gluster is capable of delivering the
IOPS that devices are capable of

Problem Statement

XFS Performance on NVMe

● IOPS increase with iodepth upto device limits
● Able to deliver device capabilities

Random I/O Test
[global]

rw=randread

startdelay=0

ioengine=libaio

direct=1

bs=4k

numjobs=4

[randread]

directory=/mnt/glustervol

filename_format=f.$jobnum.$filenum

iodepth=8

nrfiles=4

openfiles=4

filesize=10g

size=40g

io_size=8192m

[global]

rw=randwrite

end_fsync=1

startdelay=0

ioengine=libaio

direct=1

bs=4k

numjobs=4

[randwrite]

directory=/mnt/glustervol/

filename_format=f.$jobnum.$filenum

iodepth=8

nrfiles=4

openfiles=4

filesize=10g

size=40g

io_size=8192m

Configuration
● Systems:

○ Supermicro 1029p, 32 cores, 256GB
○ Single NVMe drive per system

● Software versions
○ glusterfs-3.13.1+enhancements, RHEL-7.4

● Tuning
○ gluster tuned for direct/random I/O

■ strict-o-direct=on, remote-dio=disable
■ stat-prefetch=on
■ most other gluster performance options turned

off: read-ahead, io-cache etc.

Gluster Performance on
NVMe

● IOPS peak is low compared to device capabilities

What is Gluster?

● Scale-out distributed storage system
● Aggregates storage across servers to provide a

unified namespace
● Modular and extensible architecture
● Layered on disk file systems that support extended

attributes
● Client-server model

Gluster - Terminology

VOLUME

A namespace presented
as a POSIX mount point

BRICK

The basic unit
of storage

SERVER/NODES

Contain
the bricks

TRANSLATOR
Stackable module

with a specific
purpose

fuse-bridge

client-io-threads

io-stats

client-0

open-behind

write-behind

DHT

metadata-cache

server

server-io-threads

io-stats

posix

Gluster Translator Stack

Gluster threads and their roles

Fuse reader thread
● Serves as a bridge between the fuse kernel

module and the glusterfs stack
● “Translates” IO requests from /dev/fuse to Gluster

file operations (fops)
● Sits at the top of the gluster translator stack
● Number of threads = 1

io-threads
● Thread-pool implementation in Gluster
● The threads process file operations sent by the

translator above it
● Scales threads automatically based on number of

parallel requests
● By default scales up to 16 threads.
● Can be configured to scale up to a maximum of

64 threads.
● Loaded on both client and server stack

Event threads
● Thread-pool implementation in Gluster at socket

layer
● Responsible for reading (writing too in some

cases) requests from the socket between the
client and the server

● Thread count is configurable
● Default count is 2
● Exist on both client and server

 Piecing them together...
fuse-bridge

client-io-threads

protocol/client

protocol/server

server-io-threads

posix

Too many threads, too few
IOPs...

● Enough multi-threading in the stack to saturate spinning
disks

● But with NVMe drives, hardware was far from saturated
● Experiments indicated that the bottleneck was on the

client-side.
● Multi-threading + global data structures = lock contention

Mutrace to the rescue...

● Mutrace is a mutex profiler used to track down lock
contention

● Provides a breakdown of the most contended mutexes
○ how often a mutex was locked
○ how often a lock was already taken when another

thread tried to acquire it
○ how long during the entire runtime the mutex was

locked

Performance debugging tools
in Gluster

● Volume profile command - provides per-brick IO statistics
for each file operation.
○ Stats include number of calls, min, max and average

latency per fop, etc
○ Stats collection implemented in io-stats translator
○ Can be loaded at multiple places on the stack to get

stats between translators.
○ Experiments with io-stats indicated highest latency

between client and server translator

Description of Enhancements

Fuse event-history
PROBLEM

● Fuse-bridge maintains a history of most recent 1024
operations it has performed in a circular buffer

● Tracks every fop in request as well as response path
● Protected by a single mutex lock
● Caused contention between fuse reader thread and

client event thread(s)

FIX

Disabled event-history by default since it is used only to
trace fops for debugging issues.

Impact of disabling
event-history

● Random read IOPs improved by ~ and random write IOPs
by ~15K.

Scaling fuse reader threads
PROBLEM

After removing the previous bottlenecks, fuse reader thread
started consuming ~100% of CPU

FIX

Added more reader threads to process requests from
/dev/fuse in parallel

IMPACT OF FIX

IOPs went up by 8K with 4 reader threads.

iobuf pool bottleneck
PROBLEM

● Iobuf - data structure used to pass read/write buffer between client and server
● Implemented as a preallocated pool of iobufs to avoid the cost of malloc/free every

time
● Single global iobuf pool protected by a mutex lock
● Caused lock contention between fuse reader thread(s) and client event threads

FIX

● Create multiple iobuf pools
● For each iobuf allocation request, select a pool at random or using round-robin

policy
● Instead of all threads contending on the same lock, the contention is now distributed

across iobuf pools
● More pools implies fewer contentions

Impact of iobuf
Enhancements

● Random read IOPs improved by ~4K and random write
IOPs by ~10K.

rpc layer
● Multithreaded “one-shot” epoll-based one non-blocking

socket connection between a single client and a brick
● Profile information showed high latencies in rpc layer
● Tried increasing concurrency between request

submission and reply processing within a single rpc
connection
○ No gains

● An earlier fix had shown that reducing the time a socket
is not polled for events improves performance
significantly
○ Maybe the bottleneck is while reading msgs from socket?

rpc...
● Scaling to 3-brick distribute showed improvement

○ Is single connection b/w client and brick the bottleneck?

● Multiple connections between a single brick and client
gave same improvement as 3-brick distribute
○ Credits - "Milind Changire" <mchangir@redhat.com>

Impact of Enhancements

● Random read IOPS peaks around 70k compared to ~30k
earlier

Impact of Enhancements

● Random write IOPS peaks at about 80k compared to less
than 40k earlier

Lessons learnt

● Highly contended locks, which one affects performance?
○ Hint: multiple datasets collected by altering parallelism

Lessons learnt
● During highly concurrent loads, multiple threads are

necessary even for a lightweight task
○ Client-io-threads vs fuse reader threads

● Need more lightweight tools
○ Mutrace slows down tests significantly, potentially skewing information

on bottlenecks

● Multiple bottlenecks. Validating fixes require careful
analysis
○ Process of analysis has to be iterative

lessons...
● Multiple incremental small gains added up to significant

number
● Simple tools like systat utilities like top gave good

insights
● Significant time spent in micro-optimization

○ Efforts adding more concurrency between request submission and reply
reading in rpc

○ High level models were helpful to (dis)prove hypothesis even before
attempting fix

Future Work
● Bottleneck analysis on both client and bricks still a work

in progress
○ Work till now concentrated on client

● Spin Locks while reading from /dev/fuse wasting CPU
cycles

● Reduce lock contentions
○ Inode table

● Working towards lightweight tracing tools for lock
contention

Future...
● Evaluate other rpc libraries like grpc
● Zero copy using splice

○ https://github.com/gluster/glusterfs/issues/372

● Analyse the impact of a request or reply having to pass
through multiple thread subsystems
○ Fuse-reader threads vs Io-threads vs event-threads vs

rpcsvc-request-handler threads vs syncenv threads

● Get all the work merged into master :)
○ https://bugzilla.redhat.com/show_bug.cgi?id=1467614

https://github.com/gluster/glusterfs/issues/372

Thanks!!

