Optimizing SDS for
the Age of Flash

Krutika Dhananjay, Raghavendra
Gowdappa, Manoj Pillai @Red Hat

Introduction and Problem Statement
Gluster overview

Description of Enhancements
Lessons Learned

Work in Progress

Introduction

e Gluster’s traditional strength: sequential I/0 workloads
e New Trends

o SSDs popularity, particularly for random 1/O
workloads
m |OPS capabilities way higher than HDDs
o Gluster integration with KVM and Kubernetes
m New workloads including IOPS-centric ones
e Need toensure that gluster is capable of delivering the
|OPS that devices are capable of
@

Problem Statement

XFS Performance on NVMe

fio random /O results on NWVMe device

4k block size
350
A i
300
250
il 35 read
< 200 :
; ey {5 WIite
o 150
]
100
50
1]
1 2 4 a 16 iz 64 128 256
iodepth

e |OPS increase with iodepth upto device limits
e Abletodeliver device capabilities

Random I/O Test

[global]

rw=randread
startdelay=0
ioengine=libaio
direct=1

bs=4k

numjobs=4

[randread]
directory=/mnt/glustervol

filename format=f.$jobnum.$filenum
iodepth=8

nrfiles=4

openfiles=4

filesize=10g

size=40g

io_size=8192m

[global]
rw=randwrite
end fsync=1
startdelay=0
ioengine=libaio
direct=1

bs=4k

numjobs=4

[randwrite]
directory=/mnt/glustervol/
filename format=f.$jobnum.$filenum
iodepth=8

nrfiles=4

openfiles=4

filesize=10g

size=40g

io_size=8192m

Configuration

e Systems:
o Supermicro 1029p, 32 cores, 256GB
o Single NVMe drive per system
e Software versions
o glusterfs-3.13.1+enhancements, RHEL-7.4

® Tuning
o gluster tuned for direct/random I/O
m strict-o-direct=on, remote-dio=disable
m stat-prefetch=on
m most other gluster performance options turned
off: read-ahead, io-cache etc. ,g\

Gluster Performance on

NVMe

Gluster with Random /O

Ak random read
350
300

250
el x5 read
=== (G|UStEr-baseline

200

IOPS (K)

150
100

=i S8 &

1 2 4 a 16 32 64 128 256

iodepth

e |OPS peakislow compared to device capabilities

What is Gluster?

e Scale-out distributed storage system

e Aggregates storage across servers to provide a
unified namespace

e Modular and extensible architecture

e |ayered on disk file systems that support extended
attributes

e Client-server model

Gluster - Terminology

The basic unit
of storage

Contain
the bricks

A namespace presented
as a POSIX mount point

7
R

Stackable module
with a specific
purpose

>

uster Translator Stac

fuse-bridge

client-io-threads

server-io-threads

metadata-cache

open-behind

write-behind

1
1
1
1
1
1
U
U
/7
7
/7
’
. 4 '
client-0 /
/
4
4
\\‘ ‘/,

Gluster threads and their roles

Fuse reader thread

e Serves as a bridge between the fuse kernel
module and the glusterfs stack

e “Translates” |0 requests from /dev/fuse to Gluster
file operations (fops)

e Sits at the top of the gluster translator stack

e Number of threads = 1

lo-threads

e Thread-pool implementation in Gluster

e The threads process file operations sent by the
translator above it

e Scales threads automatically based on number of
parallel requests

e By default scales up to 16 threads.

e Can be configured to scale up to a maximum of
64 threads.

e |oaded on both client and server stack /\é\

Event threads

e Thread-pool implementation in Gluster at socket
layer

e Responsible for reading (writing too in some
cases) requests from the socket between the
client and the server

e Thread count is configurable

e Default countis 2

e Exist on both client and server

Piecing them together...

fuse-bridge

1
v

client-io-threads

1
v

protocol/client

1
v

server-io-threads

Too many threads, too few

|OPs...

e Enough multi-threading in the stack to saturate spinning
disks

e But with NVMe drives, hardware was far from saturated

e EXxperiments indicated that the bottleneck was on the
client-side.

e Multi-threading + global data structures = lock contention

Mutrace to the rescue...

e Mutrace is a mutex profiler used to track down lock
contention
e Provides a breakdown of the most contended mutexes

O

O

how often a mutex was locked

how often a lock was already taken when another
thread tried to acquire it

how long during the entire runtime the mutex was
locked

Performance debugging tools

in Gluster

e Volume profile command - provides per-brick 10 statistics
for each file operation.

O

Stats include number of calls, min, max and average
latency per fop, etc
Stats collection implemented in io-stats translator
Can be loaded at multiple places on the stack to get
stats between translators.
Experiments with io-stats indicated highest latency
between client and server translator

Té\

Description of Enhancements

Fuse event-history

PROBLEM

e Fuse-bridge maintains a history of most recent 1024
operations it has performed in a circular buffer

e Tracks every fop in request as well as response path

e Protected by a single mutex lock

e Caused contention between fuse reader thread and
client event thread(s)

FIX

Disabled event-history by default since it is used only to
trace fops for debugging issues. ’lé \

Impact of disabling

event-history

Performance Impact of event-history Changes

60
50
40
30 B Gluster-eventhist-yes
B Gluster-eventhist-no
20
10
1]

random read random write

IOPS (K)

Test Type

e Randomread IOPs improved by ~ and random write |IOPs

by ~15K.

Scaling fuse reader threads

PROBLEM

After removing the previous bottlenecks, fuse reader thread
started consuming ~100% of CPU

FIX

Added more reader threads to process requests from
/dev/fuse in parallel

IMPACT OF FIX]
|OPs went up by 8K with 4 reader threads. Q\

iobuf pool bottleneck

PROBLEM

lobuf - data structure used to pass read/write buffer between client and server
Implemented as a preallocated pool of iobufs to avoid the cost of malloc/free every
time

Single global iobuf pool protected by a mutex lock

Caused lock contention between fuse reader thread(s) and client event threads

Create multiple iobuf pools

For each iobuf allocation request, select a pool at random or using round-robin
policy

Instead of all threads contending on the same lock, the contention is now distributed
across iobuf pools

More pools implies fewer contentions “1
{ o?

Impact of iobuf

Enhancements

Performance Impact of iobuf Changes

90
80
70
60
=3 = B Gluster-iobuf-singlepool
g 40 B Gluster-iobuf-multipool
T30
20
10
0
random read random write

Test Type

e Randomread IOPsimproved by ~4K and random write

|OPs by ~10K.

rpc layer

e Multithreaded “one-shot” epoll-based one non-blocking
socket connection between a single client and a brick

e Profile information showed high latencies in rpc layer

e Triedincreasing concurrency between request
submission and reply processing within a single rpc

connection
o Nogains

e An earlier fix had shown that reducing the time a socket
is not polled for events improves performance
@

significantly
o Maybe the bottleneck is while reading msgs from socket?

e Scaling to 3-brick distribute showed improvement
o Issingle connection b/w client and brick the bottleneck?

e Multiple connections between a single brick and client

gave same improvement as 3-brick distribute
o Credits - "Milind Changire" <mchangir@redhat.com>

Impact of Enhancements

Impact of Enhancements on Performace

Ak random read

60
- 50 e G|USter-baseline
Ea 40 —#— Gluster-enhanced
G 30
20
10
0
1 2 4 a8 15 32 64 128 256

iodepth

e Random read IOPS peaks around 70k compared to ~30k

earlier
-
¢ 9

Impact of Enhancements

Impact of Enhancements on Performance

Ak random write

80
T0

=l G|UIStEr-baseline

50
=== G|Uster-enhanced

IOPS (K)
&

30
20
10

1 2 4 8 15 3z 64 128 258
iodepth

e Random write IOPS peaks at about 80k compared to less

than 40k earlier
@

Lessons learnt

mutrace: Contention Time for Locks

Varying number of client-event and fuse-reader threads

1200
1000
800

B Threads-G-6
B Threads-12+12

Time in seconds

400
200
o —
iobuf lock mem-pool

Lock Mame

e Highly contended locks, which one affects performance?
o Hint: multiple datasets collected by altering parallelism
é\

Lessons learnt

e During highly concurrent loads, multiple threads are

necessary even for a lightweight task
o Client-io-threads vs fuse reader threads

e Need more lightweight tools

o Mutrace slows down tests significantly, potentially skewing information
on bottlenecks

e Multiple bottlenecks. Validating fixes require careful

analysis
o Process of analysis has to be iterative

Multiple incremental small gains added up to significant

number
Simple tools like systat utilities like top gave good
insights
Significant time spent in micro-optimization
o Efforts adding more concurrency between request submission and reply

readingin rpc
o High level models were helpful to (dis)prove hypothesis even before
attempting fix

Future Work

e Bottleneck analysis on both client and bricks still a work

In progress
o Work till now concentrated on client

e Spin Locks while reading from /dev/fuse wasting CPU
cycles

e Reduce lock contentions
o Inode table

e Working towards lightweight tracing tools for lock
contention

Future...

e Evaluate other rpc libraries like grpc

e Zero copy using splice
o https://github.com/gluster/glusterfs/issues/372

e Analyse the impact of a request or reply having to pass

through multiple thread subsystems
o Fuse-reader threads vs lo-threads vs event-threads vs
rpcsve-request-handler threads vs syncenv threads

e Get all the work merged into master :)
o https://bugzilla.redhat.com/show_bug.cgi?id=1467614

https://github.com/gluster/glusterfs/issues/372

Thanks!!

