
OBSERVABILITY 
AND THE DEV PROCESS

@cyen 
@honeycombio



HI.



"THE ONLY 
GOOD DIFF IS A 

RED DIFF"

OPS
"WORKS ON 

MY MACHINE"

DEV

"NINES DON’T MATTER IF USERS 
AREN’T HAPPY"



OPS DEV



OPS DEV
🤝

OBSERVABILITY



OPS DEV
e2e Checks 
Alert Thresholds 
Resource Allocation 
Networking 
CPU Utilization 
Hosts + Instance Types 
… etc

Builds (/ Build IDs) 
Customer IDs 
Endpoints 
Other repro-able  
characteristics



OPS DEV
"Huh, CPU Utilization is 
increasing on that 
cluster. Time to 
increase capacity!"



OPS DEV
"Request volume is increasing on that cluster… but 
it looks like it’s mostly one customer."



DEV
▸ Design documents 

▸ Architecture review 

▸ Test-driven development 

▸ Integration tests 

▸ Code review 

▸ Continuous integration 

▸ Continuous deployment 

▸🎉🥂🍾🎊 

▸ (Wait for exception tracker to complain) 



OPS DEV
▸ Not all interesting things are problems 

▸ Not all interesting things are known ahead of time 
… or express themselves as anomalies 

▸ Not all problems manifest as exceptions



OPS DEV
▸ How to build those features / fix those bugs 

▸ How features and fixes are scoped 

▸ How to verify correctness or completion 

▸ How to roll out that feature or fix



▸How’s our load? Is it spread reasonably evenly 
across our Kafka partitions? 

▸Did latency increase in our API server? Is our 
new /batch endpoint performing well?  

▸How did those recent memory optimizations 
affect our query-serving capacity?



▸How’s our load? Are high-volume customers 
spread reasonably evenly across our Kafka 
partitions? 

▸Did latency increase in our API server? Which 
customers benefit most from our new /batch 
endpoint? 

▸How did those recent memory optimizations 
affect our query-serving capacity for customers 
with string-heavy payloads?



OPS DEV
▸ Tests aren’t enough 

▸ Benchmarks aren’t enough 

▸ Exceptions aren’t enough



OPS DEV
▸ Tests aren’t enough 

▸ Benchmarks aren’t enough 

▸ Exceptions aren’t enough
👀









?



DID HIT RATE LIMIT

WOULD HAVE HIT RATE LIMIT



“WORKS ON 
MY MACHINE”











WRITE LATENCY

Whole Cluster Feature Flagged

REQUEST VOLUME

Whole Cluster Feature Flagged





“WHERE (WHEN) DID IT 
COME FROM?”

2a328fae
00568f50

a477ce0c
daa1114f

f9c5b04d
20d81e88

bffe6e3c
3f0c50549893bfe0



ERROR VOLUME, BY BUILD

ERROR VOLUME…?



DEV
▸ Design documents 

▸ Architecture review 

▸ Test-driven development 

▸ Integration tests 

▸ Code review 

▸ Continuous integration 

▸ Continuous deployment 

▸🎉🥂🍾🎊 

▸ (Wait for exception tracker to complain) 

▸ Test in production (with 
feature flags) 

▸ Identify outliers in dev 
terms, not ops terms 

▸ Explore prod in realtime



OPS DEV
▸ Form hypotheses about what their code will do in 

production 

▸ Add/tweak instrumentation as necessary 

▸ Query data to (in)validate hypotheses 

▸ Take action (and repeat as necessary)



TAKING THE FIRST FEW STEPS
▸ Start at the edge with basic, common attributes 

(e.g. HTTP)



TAKING THE FIRST FEW STEPS
▸ Start at the edge with basic, common attributes 

(e.g. HTTP) 

▸ Business-relevant or infrastructure-specific 
characteristics (e.g. customer ID, DB replica set)



TAKING THE FIRST FEW STEPS
▸ Start at the edge with basic, common attributes 

(e.g. HTTP) 

▸ Business-relevant or infrastructure-specific 
characteristics (e.g. customer ID, DB replica set) 

▸ Temporary additional fields for validating 
hypotheses



TAKING THE FIRST FEW STEPS
▸ Start at the edge with basic, common attributes 

(e.g. HTTP) 

▸ Business-relevant or infrastructure-specific 
characteristics (e.g. customer ID, DB replica set) 

▸ Temporary additional fields for validating 
hypotheses 

▸ Prune stale fields (if necessary)



SOME BEST PRACTICES
▸ Contextual, structured data



SOME BEST PRACTICES
▸ Contextual, structured data 

▸ Common set of nouns and consistent naming



SOME BEST PRACTICES
▸ Contextual, structured data 

▸ Common set of nouns and consistent naming 

▸ Don't be dogmatic; let the use case dictate the 
ingest pattern



SOME BEST PRACTICES
▸ Contextual, structured data 

▸ Common set of nouns and consistent naming 

▸ Don't be dogmatic; let the use case dictate the 
ingest pattern 

▸ e.g. instrumenting individual reads while 
batching writes



AN EXAMPLE SCHEMA EVOLUTION
first pass: 
- server_hostname 
- method 
- url 
- build_id 
- remote_addr 
- request_id 
- status 
- x_forwarded_for 
- error 
- event_time 
- team_id 
- payload_size 
- sample_rate

then we added: 
- dropped 
- get_schema_dur_ms 
- protobuf_encoding_dur_ms 
- kafka_write_dur_ms 
- request_dur_ms 
- json_decoding_dur_ms +others 
a couple of days later, we added: 
- offset 
- kafka_topic 
- chosen_partition 



AN EXAMPLE SCHEMA EVOLUTION
first pass: 
- server_hostname 
- method 
- url 
- build_id 
- remote_addr 
- request_id 
- status 
- x_forwarded_for 
- error 
- event_time 
- team_id 
- payload_size 
- sample_rate

then we added: 
- dropped 
- get_schema_dur_ms 
- protobuf_encoding_dur_ms 
- kafka_write_dur_ms 
- request_dur_ms 
- json_decoding_dur_ms +others 
a couple of days later, we added: 
- offset 
- kafka_topic 
- chosen_partition 

after that: 
- memory_inuse 
- num_goroutines 
a week after that: 
- warning 
- drop_reason 

and on and on, adding 2-3 fields 
every couple of weeks: 
- user_agent 
- unknown_columns 
- dataset_partitions 
- dataset_id 
- dataset_name 
- api_version 
- create_marker_dur_ms 
- marker_id 
- nil_value_for_columns 
- batch 
- gzipped 
- batch_datapoint_lens 
- batch_num_datasets 
- batch_process_datapoints_dur_ms 



DEVS, OUR MISSION:
▸ Stop writing software based on intuition, start 

backing it up with data 

▸ Teach observability tools to speak more than "Ops" 

▸ ??? (← ask lots of questions and validate 
hypotheses) 

▸ Profit!



THANKS!
@cyen

more stories:  
https://honeycomb.io/blog/categories/dogfooding 
icons:  
https://thenounproject.com/daniele.catalanotto


