OBSERVABILITY
AND THE DEV PROCESS

(@cyen
(@honeycombio

HI.

OPS DEV

"THE ONLY "WORKS ON
GOOD DIFF IS A MY MACHINE"
RED DIFF

'NINES DON'T MATTER IF USERS
AREN'T HAPPY"

OPSMD EV

'

OBSERVABILITY

OPS

eZ2e Checks

Alert Thresholds
Resource Allocation
Networking

CPU Utilization

Hosts + Instance Types

I\'I-I\

DEV

Builds (/ Build IDs)
Customer [Ds
-ndpoints

Other repro-able
characteristics

OPSMD EV

"Huh, CPU Utilization is
increasing on that
cluster. Time to
increase capacity!”

OPSMD EV

Request volume is increasing on that cluster... but

t looks like it's mostly one customer’

» Design documents
» Architecture review

» Test-driven development

» Integration tests
» Code review
» Continuous Iintegration

» Continuous deployment

§ Qe
| 6@%)}

» (Wait for exception tracker to complain)

DEV

» Not all interesting things are problems

» Not all interesting things are known ahead of time
.. Or express themselves as anomalies

» Not all problems manitest as exceptions

DEV

» How to build those features / fix those bugs

» How features and fixes are scoped

» How to verify correctness or completion

» How to roll out that feature or fix

» How's our load? |s it spread reasonably evenly
across our Kafka partitions?

» Did latency increase in our API server? s our
new /batch endpoint pertorming well?

» How did those recent memory optimizations
affect our query-serving capacity?

partitions”

» How's our load? Are high-volume customers
spread reasonably evenly across our Kafka

» Did latency increase in our AP| server? Which
customers benefit most from our new /batch
endpoint?

» How did those recent
Ur query-servi

affect o

men
ng ca

ory op’

Dacity

with string-heavy payloads?

Imizations

‘or customers

DEV

» Tests aren't enough

» Benchmarks aren't enough

» Exceptions aren't enough

DEV
29

» Tests aren't enough

» Benchmarks aren't enough

» Exceptions aren't enough

O O

\/

Vil

O 0 O

U

hPA

O/

Vil

O 0 O

U

VLl

A

DID RIT RATE LIMIT

WOULD HAVE HIT RATE LIMIT

O O

\/

"WORKS ON
MY MACHINE"

©O Whole Cluster © Feature Flagged

REQUEST VOLUME

O Whole Cluster O Feature Flagged

M\

“WHERE (WHEN) DID IT
COME FROM?"

2a328fae ad77celcC f9c5b0o4d bffe6e3c
2Q0°2hfel OOARRQFEQ Aaa1114€fF 2049199 2fN~EAKE,

. ERROR VOLUME

Voo

ERROR VOLUME, BY BUILD

~—K X

» Design documents
» Architecture review

» Test-driven development

DEV

» Test in production (with
feature flags)

» Integration tests
» Code review

» Continuous Integration R
: » |[dentify outliers in dev

» Continuous deployment terms, not ops terms

&) Bxplore prod in realtime

» (Wait for exception tracker to complain)

OPSMD EV

» Form hypotheses about what their code will do in
oroduction

» Add/tweak instrumentation as necessary
» Query data to (in)validate hypotheses

» Take action (and repeat as necessary)

TAKING THE FIRST FEW STEPS J7

» Start at the edge with basic, common attributes
(e.g. HTTP)

TAKING THE FIRST FEW STEPS J7

» Start at the edge with basic, common attributes

(e.g. HTTP)

» Business-relevant or infras

ructure-specif

characteristics (e.g. custor

ner D, DB repl

IC

ica set)

TAKING THE FIRST FEW STEPS J7

» Start at the edge with basic, common attributes

(e.g. HTTP)

» Business-relevant or infras

ructure-specif

characteristics (e.g. custor

ner D, DB repl

» Temporary additional fields for validating

hypotheses

IC

ica set)

TAKING THE FIRST FEW STEPS J7

» Start at the edge with basic, common attributes

(e.g. HTTP)

» Business-relevant or infrastructure-specif

characteristics (e.g. custor

ner D, DB repl

» Temporary additional fields for validating

hypotheses

» Prune stale fields (if necessary)

IC

ica set)

SOME BEST PRACTICES

» Contextual, structured data

SOME BEST PRACTICES

» Contextual, structured data

» Common set of nouns and consistent naming

SOME BEST PRACTICES

» Contextual, structured data
» Common set of nouns and consistent naming

» Don't be dogmatic; let the use case dictate the
iIngest pattern

SOME BEST PRACTICES

» Contextual, structured data
» Common set of nouns and consistent naming

» Don't be dogmatic; let the use case dictate the
iIngest pattern

» e.g.instrumenting individual reads while
batching writes

AN EXAMPLE SCHEMA EVOLUTION

first pass: then we added:

- server_hostname - dropped

- method - get_schema_dur_ms

- url - protobuf_encoding_dur_ms

- build_id - kaftka_write_dur_ms

- remote_addr - request_dur_ms

- request_id - json_decoding_dur_ms +others
- status a couple of days later, we added:
- x_forwarded_for - offset

- error - kaftka_topic

- event_time - chosen_partition

- team_1id

- payload_size
- sample_rate

AN EXAMPLE SCHEMA EVOLUTION

and on and on, adding 2-3 fields
every couple of weeks:

- user_agent

- unknown_columns

- dataset_partitions

- dataset_1id

- dataset_name

- apl_version

- create_marker_dur_ms

- marker_1id

- nil_value_for_columns

- batch
- gzipped

- batch_datapoint_lens
- batch_num_datasets

after that:
-‘'memory_1inuse
-num_goroutines
a week after that:
- warning

- 'drop_reason

DEVS, OUR MISSION:

» Stop writing software based on intuition, start
backing it up with data

» Teach observability tools to speak more than "Ops’

» 777 (+ ask lots of questions and validate
hypotheses)

» Profit!

THANKS! ©

(@cyen

more stories:
https://honeycomb.io/blog/categories/dogfooding

icons:
https://thenounproject.com/daniele.catalanotto

