
net_mdev: userland network IO
Fosdem 2018
Ilias Apalodimas
Mykyta Iziumtsev
François-Frédéric Ozog

Why userland network IO?
Time sensitive networking

● Minority of applications need 1µs latency 1µs delay

● adapter-adapter latency across 5 cut-through switches can be 1µs

● adapter-application latency with 500MHz-1Ghz processor:

20-40µs, jitter 200-600µs!

Dual stack and drastically reduce driver building/maintenance for ODP, DPDK, VPP

● Best of both worlds

Goals
Generic

● *Any* IO model usable by DPDK, ODP, VPP, any other app

zero copy

● 100Gbps: 148Mpps, 15GB/s ~ 1 DDR4 channel

● Ring desc + packet + virtual desc (+ packet) -> 3(4) DDR4 channels

secure

● IOMMU is a minimum

userland network IO

● No userland device drivers, hw revision/flavours insensitive and keep netdevs

with dual stack capability

● Kernel and userland collaborate in different schemes

net_mdev

Userspace
Kernel

netdev

netlink…
vfio-mdev

packets

IO Driver

net_mdev

Userspace
Kernel

netdev

netlink…
vfio-mdev

IO Driver packets

Operations: traditional command line

Userspace
Kernel

netdev

IO Driver

Ifconfig, ip
Netlink
notification

ioctl: carrier, mtu...

Tcpdump: will require more complex
support such as injection channel and
other sensing/filtering stuff

Operations: from userland network io

Userspace
Kernel

netdev

IO Driver

Ifconfig, ip

ioctl: carrier, mtu...

Netlink
notification

control

Design options (1/2)
AF_XDP (formerly AF_PACKET v4)

● Accelerators support

● IO models (https://www.spinics.net/lists/netdev/msg481494.html)

DMA Buf

● DMA sync too costly (OK for >=4KB buffers < 1M ops/s)

VFIO

● Loses netdev

VFIO-mdev
● Technology

○ Introduced in kernel 4.10.
○ Currently supported by Intel i915/QEMU to support virtual GPUs.
○ No real device IO with IOMMU support, just mapping of kernel allocated areas

● Assign queues to VMs through Qemu: Intel/RedHat
● Accelerator access (crypto…): Huawei

Receive packet IO
● Packet Array IO model (majority of PCI NICs), with inline option

● Multi Packet Array IO model (common in Arm SoCs)

● Tape IO model (Chelsio, Netcope)

Preload descriptors with slot addresses;2MB: 1024 packets

NO descriptors preload; feed HW with unstructured memory 2MB: 32768 packets

Why?
Fat pipe acceleration
Beat PCIe DMA transaction rate
../..

Transmit packet IO
● Traditional

● Inline

Why?
Beat PCIe DMA transaction rate

Design options (2/2)
AF_PACKET v4

● Accelerators support

● NIC IO models

DMA Buf

● DMA sync too costly (OK for >=4KB buffers < 1M ops/s)

VFIO

● Loses netdev

VFIO-mdev
● Technology

○ Introduced in kernel 4.10.
○ Currently supported by Intel i915/QEMU to support virtual GPUs.
○ No real device IO with IOMMU support, just mapping of kernel allocated areas

● Assign queues to VMs through Qemu: Intel/RedHat
● Accelerator access (crypto…): Huawei

From mediated devices to net_mdev
● vfio_mdev

○ Extends VFIO-mdev with IOMMU support

● Design constraints
○ net_mdev module with no impact to kernel code (net_dev_priv_flags: IFF_NET_MDEV)
○ Willing device drivers can leverage it in a “non dependent” manner

■ No module dependency
■ Severe restrict addition of ‘ifs’

● netdev “boilerplate”:
○ Registration…
○ control (mtu, carrier control, statistics are quite generic through netlink)

net_mdev

Userspace
Kernel

netdev

netlink…
vfio-mdev

IO Driver packets

Operations walk through: kernel side
● Preparation

○ Load driver with global enable parameter net_mdev=1
○ mdev_add_essential(): Added on each NIC driver.
○ Descriptor rings are PAGE_SIZE aligned
○ VFIO-MDEV creates control files in /sys

● Capture the netdev
○ echo $dev_uuid > /sys/class/net/$intf/device/mdev_supported_types/$sys_drv_name/create

■ /sys/bus/mdev/devices/$dev_uuid/netmdev/netdev

○ Transition
■ Graceful rx/tx shutdown: netif_tx_stop_all_queues…
■ Keep carrier up if possible
■ VFIO-MDEV module sets IFF_NET_MDEV flag.
■ Set hardware in known state (hardware dependent, from clear producer/consumer indexes to full reset, rx at hw level)
■ Set RX interrupts according to polling strategy. Using the IFF_NET_MDEV flag we can intercept the kernel interrupt handler

and redirect it to the userspace with eventfd or similar functionality.
○ Inventorize memory regions to be mapped in user-space (Rx/Tx descriptors arrays, doorbells

MMIO, memory management MMIO…). Each region is exported using struct
vfio_region_info_cap_type from the VFIO-API

○ At this stage kernel cannot do network IO (send/receive packets)

Operations walk through: userland side
● Application start

○ ioctls for VFIO_GROUP_GET_STATUS, VFIO_SET_CONTAINER, VFIO_SET_IOMMU,
VFIO_DEVICE_GET_INFO to initialize IOMMU and discover device type (PCI…) and regions

○ ioctl VFIO_DEVICE_GET_REGION_INFO and mmap(net_mdev) each device region
■ Application does not specify physical memory or bus address: just region index

● Packet memory preparation
○ Packet arrays or unstructured memory areas allocation
○ ioctl VFIO_IOMMU_MAP_DMA with mapping parameters (BIDIRECTIONAL…)
○ hardware update: hardware specific

■ Update descriptor rings for packet array type
■ Load free list for tape IO model

○ Signal transition finished (ioctl), kernel does whatever it needs to re-enable packet io

● Network IO
○ RX loop (full poll mode or irqfd), DMA sync if needed
○ Zero-copy or Inline payloads, DMA sync if needed
○ Ring appropriate doorbells
○ Packet life cycle management: hardware specific

Code statistics
● Common kernel: 900

● Common userland: 650

Original Kernel
Adds

Useland
IO Driver

Realtek r8169 10000 (obsolete) (obsolete)

Intel e1000e 29800 250 600

Intel xl710 52600 400 650

Chelsio T4/T5/T6 48000 550 950

Performance
NIC Speed cores rx(Mpps) tx(Mpps) Max(Mpps)

Intel xl710 40Gbit 3 19 41.55 59.52

Chelsio T5 T5-40gbit 4 10.3 48 59.52

Chelsio T6 T6-50Gbps (74.4) (74.4) 74.4

- Intel xl710 was tested on a Core i5 7400 @ 3.0GHz
- Chelsio was tested on Xeon CPU E5-2620 v3 @ 2.40GHz
- Rx direction still under development
- Chelsio T6 is supported, expecting results
- Test implementation with 1Gbit e1000e is getting close to line rate

results on a single core

Experience sharing
● Keep ring life cycle in the kernel

○ Complex, no real standard way of doing it, context (carrier...) of creation vary
○ Hardware revision dependent
○ Some hardware need to be turned “off” to allow decommissioning of ring: prefer not to have

influence on carrier (for telecom network devices a single carrier event should happen)

● Transition can be very complex

● Single IOVA shared amongst netdev

● Multiport device
○ If PCI, one PCI Config space per port or not

○ Per port MMIO (still single PCI config space)

○ Diverse strategies to operate securely when partial port capture
■ create VFs per port

■ Implement signaling between userland and kernel

User land DMA operations
● Descriptor rings

○ dma_alloc_coherent
■ PAGE_SIZE rounding required for security
■ Either cacheable or not depending on architecture and device

○ Other: not seen

● Packet memory
○ Userland allocated then mapped by vfio_mdev API

○ dma_map_single

○ Synchronization is needed
■ Coherent dma: dma_sync_single_for_* is NOOP

■ Non coherent dma: ioctl is required, batching of operations to allow 148Mpps

What’s next?
LKML

-> RFC, Intel/Redhat (mdev for Qemu), Huawei (WrapDrive), AF_XDP discussion

Kernel has to protect from devices!

-> IOMMU all the time...

Coherent interconnects (CCIX, OpenCAPI, Intel “*”), Gen-Z

-> hardware and software IO metadata have to be re-architected

Thank You

For further information: www.linaro.org

http://www.linaro.org

