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Agenda
▪ MySQL at Facebook

▪ MyRocks overview

▪ Production Deployment

▪ Future Plans



MySQL “User Database (UDB)” at 
Facebook▪ Storing Social Graph

▪ Massively Sharded

▪ Low latency

▪ Automated Operations

▪ Pure Flash Storage (Constrained by space, not by CPU/IOPS)



What is MyRocks
▪ MySQL on top of RocksDB (RocksDB storage engine)

▪ Open Source, distributed from MariaDB and Percona 
as well
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http://myrocks.io/



MyRocks Initial Goal at Facebook
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MyRocks features
▪ Clustered Index (same as InnoDB)

▪ Bloom Filter and Column Family

▪ Transactions, including consistency between binlog and 
RocksDB

▪ Faster data loading, deletes and replication

▪ Dynamic Options

▪ TTL

▪ Online logical and binary backup



MyRocks vs InnoDB
▪ MyRocks pros

▪ Much smaller space (half compared to compressed InnoDB)
▪ Gives better cache hit rate

▪ Writes are faster = Faster Replication

▪ Much smaller bytes written (can use more afordable fash storage)

▪ MyRocks cons  (improvements in progress)
▪ Lack of several features

▪ No SBR, Gap Lock, Foreign Key, Fulltext Index, Spatial Index support. Need to use case sensitive 
collation for perf

▪ Reads are slower, especially if your data fts in memory

▪ More dependent on flesystem and OS. Lack of solid direct i/o. Must use newer 4.6 
kernel

▪ There are too many tuning options beyond bufer pool, such as bloom flter, 
compactions etc



Creating frst MyRocks instance without 
downtime
▪ Picking one of the InnoDB slave instances, then starting 
logical dump and restore
▪ Stopping one slave does not afect services

Master (InnoDB)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (InnoDB) Slave4 (MyRocks)

Stop & Dump & Load



Faster Data Loading
Normal Write Path in MyRocks/RocksDB

Write Requests

MemTableWAL

Level 0 SST

Level 1 SST

Level max SST

….

Flush

Compaction

Compaction

Faster Write Path

Write Requests

Level max SST

“SET SESSION rocksdb_bulk_load=1;”
Original data must be sorted by primary key



Creating second MyRocks instance without 
downtime

Master (InnoDB)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (MyRocks) Slave4 (MyRocks)myrocks_hotbackup
(Online binary 

backup)



Promoting MyRocks as a master

Master (MyRocks)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (InnoDB) Slave4 (MyRocks)



Promoting MyRocks as a master

Master (MyRocks)

Slave1 (MyRocks) Slave2 (MyRocks) Slave3 (MyRocks) Slave4 (MyRocks)



Our current production status

We COMPLETED InnoDB to MyRocks migration
in UDB

We saved 50% space in UDB
compared to compressed InnoDB

We started working on migrating
other large database tiers



Development Roadmaps
▪ Helping MariaDB and Percona Server to release with stable 
MyRocks

▪ Matching read performance vs InnoDB
▪ https://smalldatum.blogspot.com

▪ Supporting Mixed Engines

▪ Better Replication

▪ Supporting Bigger Instance Size



Mixed Engines
▪ Currently our production use case is either “MyRocks only” or 
“InnoDB only” instance

▪ There are several internal/external use cases that want to use 
InnoDB and MyRocks within the same instance, though single 
transaction does not overlap engines

▪ Online logical/binary Backup support and benchmarks are 
concerns

▪ Current plan is extending xtrabackup to integrate 
myrocks_hotbackup

▪ Considering to backporting gtid_pos_auto_engines from 
MariaDB



Better Replication
▪ Removing engine log

▪ Both internal and external benchmarks show that qps improves 
signifcantly with binlog disabled

▪ Real Problem would be two logs – binlog and engine log, which 
requires 2pc and ordered commits

▪ One Log - use one log as the source of truth for commits -- either 
binlog, binlog-like service or RocksDB WAL

▪ We heavily rely on binlogs (for semisync, binlog consumers), TBD is 
how much perf we gain by stopping writing to WAL

▪ Parallel replication apply

▪ Batching

▪ Skipping using transactions on slaves



Supporting Bigger Instance Size
▪ Problem Statement: Shared Nothing database is not general purpose 

database

▪ MySQL Cluster, Spider, Vitess

▪ Good if you have specifc purposes. Might have issues if people lack of expertise 
about atomic transactions, joins and secondary keys

▪ Suggestion: Now we have 256GB+ RAM and 10TB+ Flash on 
commodity servers. Why not run one big instance and put everything 
there?

▪ Bigger instances may help general purpose small-mid applications

▪ They don’t have to worry about sharding. Atomic trans, joins and secondary keys 
just work

▪ e.g. Amazon Aurora (supporting up to 60TB instance)



Future Plans to support Bigger Instance 
(1)▪ Parallel transactional mysqldump

▪ Parallel Query
▪ e.g. how to make mysqldump fnish within 24 hours from 20TB 

table?

▪ Parallel binary copy
▪ e.g. how quickly can we create a 60TB replica instance in a remote 

region?

▪ Parallel DDL, Parallel Loading

▪ Resumable DDL
▪ e.g. if the DDL is expected to take 10 days, what will happen if 

mysqld restarts after 8 days?



Future Plans to support Bigger Instance 
(2)
▪ Better join algorithm

▪ Much faster replication

▪ Can handle 10x connection requests and queries

▪ Good resource control

▪ H/W perspective: Shared Storage and Elastic Computing 
Units

▪ Can scale read replicas from the same shared storage



Summary
▪ We fnished deploying MyRocks in our production user 
database (UDB)

▪ You can start deploying slaves, with consistency check

▪ We have added many status counters for instance 
monitoring

▪ More interesting features will come this year
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