
MyRocks deployment at Facebook
and Roadmaps

Yoshinori Matsunobu
Production Engineer / MySQL Tech Lead, Facebook
Feb/2018, #FOSDEM #mysqldevroom

Agenda
▪ MySQL at Facebook

▪ MyRocks overview

▪ Production Deployment

▪ Future Plans

MySQL “User Database (UDB)” at
Facebook▪ Storing Social Graph

▪ Massively Sharded

▪ Low latency

▪ Automated Operations

▪ Pure Flash Storage (Constrained by space, not by CPU/IOPS)

What is MyRocks
▪ MySQL on top of RocksDB (RocksDB storage engine)

▪ Open Source, distributed from MariaDB and Percona
as well

MySQL Clients

InnoDB RocksDB

Parser
Optimizer
Replication
etc

SQL/Connector

MySQL

http://myrocks.io/

MyRocks Initial Goal at Facebook

InnoDB in main database

90%

SpaceIOCPU
Machine limit

15%20%

MyRocks in main database

45%

SpaceIOCPU
Machine limit

15%21%

21%
15%

45%

MyRocks features
▪ Clustered Index (same as InnoDB)

▪ Bloom Filter and Column Family

▪ Transactions, including consistency between binlog and
RocksDB

▪ Faster data loading, deletes and replication

▪ Dynamic Options

▪ TTL

▪ Online logical and binary backup

MyRocks vs InnoDB
▪ MyRocks pros

▪ Much smaller space (half compared to compressed InnoDB)
▪ Gives better cache hit rate

▪ Writes are faster = Faster Replication

▪ Much smaller bytes written (can use more afordable fash storage)

▪ MyRocks cons (improvements in progress)
▪ Lack of several features

▪ No SBR, Gap Lock, Foreign Key, Fulltext Index, Spatial Index support. Need to use case sensitive
collation for perf

▪ Reads are slower, especially if your data fts in memory

▪ More dependent on flesystem and OS. Lack of solid direct i/o. Must use newer 4.6
kernel

▪ There are too many tuning options beyond bufer pool, such as bloom flter,
compactions etc

Creating frst MyRocks instance without
downtime
▪ Picking one of the InnoDB slave instances, then starting
logical dump and restore
▪ Stopping one slave does not afect services

Master (InnoDB)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (InnoDB) Slave4 (MyRocks)

Stop & Dump & Load

Faster Data Loading
Normal Write Path in MyRocks/RocksDB

Write Requests

MemTableWAL

Level 0 SST

Level 1 SST

Level max SST

….

Flush

Compaction

Compaction

Faster Write Path

Write Requests

Level max SST

“SET SESSION rocksdb_bulk_load=1;”
Original data must be sorted by primary key

Creating second MyRocks instance without
downtime

Master (InnoDB)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (MyRocks) Slave4 (MyRocks)myrocks_hotbackup
(Online binary

backup)

Promoting MyRocks as a master

Master (MyRocks)

Slave1 (InnoDB) Slave2 (InnoDB) Slave3 (InnoDB) Slave4 (MyRocks)

Promoting MyRocks as a master

Master (MyRocks)

Slave1 (MyRocks) Slave2 (MyRocks) Slave3 (MyRocks) Slave4 (MyRocks)

Our current production status

We COMPLETED InnoDB to MyRocks migration
in UDB

We saved 50% space in UDB
compared to compressed InnoDB

We started working on migrating
other large database tiers

Development Roadmaps
▪ Helping MariaDB and Percona Server to release with stable
MyRocks

▪ Matching read performance vs InnoDB
▪ https://smalldatum.blogspot.com

▪ Supporting Mixed Engines

▪ Better Replication

▪ Supporting Bigger Instance Size

Mixed Engines
▪ Currently our production use case is either “MyRocks only” or
“InnoDB only” instance

▪ There are several internal/external use cases that want to use
InnoDB and MyRocks within the same instance, though single
transaction does not overlap engines

▪ Online logical/binary Backup support and benchmarks are
concerns

▪ Current plan is extending xtrabackup to integrate
myrocks_hotbackup

▪ Considering to backporting gtid_pos_auto_engines from
MariaDB

Better Replication
▪ Removing engine log

▪ Both internal and external benchmarks show that qps improves
signifcantly with binlog disabled

▪ Real Problem would be two logs – binlog and engine log, which
requires 2pc and ordered commits

▪ One Log - use one log as the source of truth for commits -- either
binlog, binlog-like service or RocksDB WAL

▪ We heavily rely on binlogs (for semisync, binlog consumers), TBD is
how much perf we gain by stopping writing to WAL

▪ Parallel replication apply

▪ Batching

▪ Skipping using transactions on slaves

Supporting Bigger Instance Size
▪ Problem Statement: Shared Nothing database is not general purpose

database

▪ MySQL Cluster, Spider, Vitess

▪ Good if you have specifc purposes. Might have issues if people lack of expertise
about atomic transactions, joins and secondary keys

▪ Suggestion: Now we have 256GB+ RAM and 10TB+ Flash on
commodity servers. Why not run one big instance and put everything
there?

▪ Bigger instances may help general purpose small-mid applications

▪ They don’t have to worry about sharding. Atomic trans, joins and secondary keys
just work

▪ e.g. Amazon Aurora (supporting up to 60TB instance)

Future Plans to support Bigger Instance
(1)▪ Parallel transactional mysqldump

▪ Parallel Query
▪ e.g. how to make mysqldump fnish within 24 hours from 20TB

table?

▪ Parallel binary copy
▪ e.g. how quickly can we create a 60TB replica instance in a remote

region?

▪ Parallel DDL, Parallel Loading

▪ Resumable DDL
▪ e.g. if the DDL is expected to take 10 days, what will happen if

mysqld restarts after 8 days?

Future Plans to support Bigger Instance
(2)
▪ Better join algorithm

▪ Much faster replication

▪ Can handle 10x connection requests and queries

▪ Good resource control

▪ H/W perspective: Shared Storage and Elastic Computing
Units

▪ Can scale read replicas from the same shared storage

Summary
▪ We fnished deploying MyRocks in our production user
database (UDB)

▪ You can start deploying slaves, with consistency check

▪ We have added many status counters for instance
monitoring

▪ More interesting features will come this year

(c) 2009 Facebook, Inc. or its licensors. "Facebook" is a registered trademark of Facebook, Inc.. All rights reserved. 1.0

	MyRocks deployment at Facebook and Roadmaps
	Agenda
	MySQL “User Database (UDB)” at Facebook
	What is MyRocks
	MyRocks Initial Goal at Facebook
	MyRocks features
	MyRocks vs InnoDB
	Creating first MyRocks instance without downtime
	Faster Data Loading
	Creating second MyRocks instance without downtime
	Promoting MyRocks as a master
	Promoting MyRocks as a master
	Our current production status
	Development Roadmaps
	Mixed Engines
	Better Replication
	Supporting Bigger Instance Size
	Future Plans to support Bigger Instance (1)
	Future Plans to support Bigger Instance (2)
	Summary
	Slide 21

