
Multitasking on Cortex-M(0)
class MCU
A deepdive into the Chromium-EC scheduler

$whoami

● Embedded Software Engineer at National Instruments

● We just finished our first product using Chromium-EC

and future ones to come

● Other stuff I do:
○ fpga-mgr framework (co)maintainer for the linux kernel
○ random drive-by contributions to other projects

Cortex-M0 registers

● Cortex-M0 has 16 general purpose

registers
○ Low registers (r0-r7)
○ High registers (r8-r15)
○ Undefined status at reset
○ Limited size in thumb, often only low regs

● r13 is stack pointer for current context

stack
○ It is banked, eigher msp or psp

● xPSR is depending on mode (later)
○ APSR (application program status register)
○ EPSR (exception program status register)
○ IPSR (interrupt program status register)

● PRIMASK (later)

● CONTROL (later)

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13/ sp

r14 / lr

r15 / pc

msp

psp

xPSR

PRIMASK

CONTROL

Stack pointer (sp/r13)

● Used for accessing stack memory via push

and pop instructions

● Can be modified / accessed like any other

reg via ldr, str, subs, adds, ...

● Either r13 or sp will work

● It is banked (later more)

● Always word aligned, i.e. lowest two bits will

always read 0

● Stack is full descending

r7 = 0x42

sp = 0x20000000

0x20000000

0x1ffffffc

0x1ffffff8

0x1ffffff4

sp

0x42

r7 = 0x42

sp = 0x1ffffffc

0x20000000

0x1ffffffc

0x1ffffff8

0x1ffffff4

sp

push r7

Link Register (r14) & Program Counter (r15)

● Link register lr is used with subroutine calls

and exceptions (later)

● During subroutine call (using bl / blx),

sequentially next pc value is loaded into lr

● lr[0] set indicates a return to Thumb state

● Some instructions need lr[0] to be set

● Reading it will give current instruction + 4

(pipeline)

● pc[0] should be zero, however bx/blx

require it to be set, to make sure we stay in

Thumb

Combined Program Status Register

● the xPSR is a combined register, where apsr

is the application program status registers

● Bits 31:0 are the ALU flags
○ Not
○ Zero
○ Carry
○ Overflow

● The ipsr contains the exception number in

the lower bits 5:0
○ if 0, then thread mode (later)

● The epsr is the exception program status

register

● All of them can be accessed with msr / mrs
instructions

reservedN Z C V

31 30 29 28

reserved

reservedreserved T

31:24 24

27:0

Exception
Number

5:031:6

23:0

Calling convention

● r0-r3 are the argument and scratch

registers

● r0-r1 are also the result registers (r1 if

result > word size)

● r4-r8 are callee-save registers (i.e.

callee gotta restore them on return)

● r9 might be a callee-save register or

not (on some variants of AAPCS it is a

special register, ignore that)

● r10-r11 are callee-save registers

● r12-r15 are special registers (r12 is

intra procedure scratch register)

PRIMASK

● PRIMASK
○ If set no exceptions with

programmable priority entered
○ If not set, no effect

reserved

31:1 0

PRIMASK

CONTROL

● Only one privilege level in

Cortex-M0

● CONTROL[0] is reserved (priv. In

M3)

● CONTROL[1]
○ if set sp = psp
○ if not set sp = msp

● Using CONTROL[1] one can switch
between psp and msp

reserved

31:2 1 0

Active
stack

reserved

Thumb State (overview)

Handler
mode

sp == msp

Thread
mode

sp == msp

Thread
mode

sp == psp

Exception
return

Exception
return

CONTROL[1] = 1

CONTROL[1] = 0

Reset

● Two modes
○ Handler mode
○ Thread mode

● Handler mode always uses
msp as stack

● Thread mode usage of
stack depends on setting in
control register

● After reset start out in
Thread mode with msp
active

● Thread to Handler mode
transition via Exception

Exception

Exceptions

● Event that changes program flow

● Suspends current code, run handler, resume

● (some) exceptions on Cortex-M0 have fixed priorities
○ Reset
○ NMI
○ Hard Fault

● some exceptions have programmable priority
○ SysTick (later)
○ PendSV (later)
○ IRQs

● 0 is the highest priority

● PRIMASK can be used to mask interrupts

● Interrupts can be pending

Exceptions: Vectors

● Cortex-M0 processors support vectored exceptions

● Table contains addresses of handlers, processor fetches address on exception

● Processor jumps to correct handler, instead of having single handler

● Make sure to set a default one

Exceptions (Stacking
with MSP)

● Cortex-M(0) comes with hardware features

that make dealing with exceptions easier

● On exception entry some registers are

pushed onto the stack (depending on current

mode)

● These registers form the Exception Context
○ r0-r3, r12, lr, pc, xPSR

● Stacking happens on current sp (example is if

psp is not used)

● Makes nesting possible

● Unstacking happens based on lr

Thread

Handler

xPSR
pc
lr

r12

sp

r3
r2
r1
r0

sp

xPSR
pc
lr

r12
r3
r2
r1
r0

sp

sp

stacking unstacking

Exceptions (Stacking
with PSP)

● Cortex-M(0) comes with hardware features

that make dealing with exceptions easier

● On exception entry some registers are

pushed onto the stack (depending on current

mode)

● These registers form the Exception Context
○ r0-r3, r12, lr, pc, xPSR

● Stacking happens on current sp
● Makes nesting possible

● Unstacking happens based on lr

Thread

Handler

xPSR
pc
lr

r12
r3
r2
r1
r0

psp

sp

stacking unstacking

xPSR
pc
lr

r12

sp
==
psp

r3
r2
r1
r0

psp

msp sp sp
==
msp

msp

Exceptions (Tail Chaining)

● Speeds up exception

servicing

● On completion, if there is

a pending exception,

unstacking is skipped

● New handler runs

Thread

Handler Handler A

stacking unstacking

Handler B

Exception
Return

Exception
Return

Exception
A

Exception
B

Exceptions (Late arrival)

● If higher priority

exception arrives before

execution of handler, but

after stacking

● Stacking gets reused

Thread

Handler Handler B

stacking unstacking

Handler a

Exception
A

Exception
B

Exception
Return

Exception
Return

Exceptions (Nested)

● If higher priority

exception arrives after

Exception handler starts

● Higher Prio handler

preempted

● Afterwards lower priority

handler finished

Thread

Handler

Handler B

stacking
unstacking

Han

Exception
A

Exception
B

Exception
Return

Exception
Return

dler A

P
riority

stacking unstacking

Exceptions (EXC_RETURN)

● Depending on

value of the lr
different paths

will be taken

● if lr
○ 0xfffffff1

unstacking
msp to
handler mode

○ 0xfffffff9
unstacking
msp to thread
mode

○ 0xfffffffd
unstacking
psp to thread
mode

Handler
mode

sp == msp

Thread
mode

sp == msp

Thread
mode

sp == psp

Stacking
using
msp

Stacking
using psp

Unstacking
using msp

Unstacking
using psp

Exception
Exception

Exception
(nested)

Exception
Return

Setting /
Clearing

CONTROL[1]

0xfffffff1
0xfffffffD

0xfffffff9

Startup code / Getting to main()

● On reset execution starts at reset vector

● Do a bunch of stuff before we can run

‘normal’ C

● Make sure we’re in the right state (MSP,

Thumb, Privileged, …)

● Initialize bss section to zero

● Copy exception vectors to SRAM

● Copy initialized data section to SRAM
○ e.g. global variables

● Set initial stack pointer

● Jump to main()

Getting to main() in Chromium-EC
reset:

movs r0, #0

msr control, r0

isb

movs r0, #0

ldr r1,_bss_start

ldr r2,_bss_end

bss_loop:

str r0, [r1]

adds r1, #4

cmp r1, r2

blt bss_loop

ldr r1, =vectors

ldr r2, =sram_vtable

movs r0, #0

vtable_loop:

ldr r3, [r1]

str r3, [r2]

adds r1, #4

adds r2, #4

adds r0, #1

cmp r0, #48

blt vtable_loop
movs r0, #3
ldr r1, =0x40010000
str r0, [r1]

ldr r0,_ro_end

ldr r1,_data_start

ldr r2,_data_end

data_loop:

ldr r3, [r0]

adds r0, #4

str r3, [r1]

adds r1, #4

cmp r1, r2

blt data_loop

ldr r0, =stack_end

mov sp, r0

bl main

fini_loop:

b fini_loop

● After reset make sure CONTROL = 0
● Write bss to zero
● Copy over vectors
● Set vector table to SRAM
● Copy initialized data
● Go!

Multitasking - Context Switching

● General idea: Run tasks in a way that each of

them can use processor exclusively

● As opposed to cooperative approaches, tasks

don’t need to be aware of each other

● To make that work, each of them will need

state, i.e. context to be restored

● As seen before, Context: registers + stack

● OS decides who goes next

Task A Task B Task CO
S

O
S

O
S

time

Multitasking - Stack layout

● Need one stack per task

● Need one stack for OS

● OS stack needs to be large enough to deal

with all Exceptions

● Task doesn’t need to know it’s own stack

● OS takes care of dealing with stack pointers

● Heap (malloc, free …) is optional

Task A
Stack

Task B
Stack

Task C
Stack

OS
Stack

Heap

Multitasking - Systick

● Use a timer as periodic event source

● Use these events to run scheduler

● Correct prioritization is required

● So common that ARM provides (optional)

one in ARMv6

O
S

O
S

O
S

time

Task A Task B Task C

Tick Tick Tick

Multitasking in Chromium-EC

struct task {

u32 sp;

u32 events;

…

u32 *stack;

};

● Task struct as shown

● No heap

● Fixed priorities

● Events
○ Timer
○ Mutex
○ Wake
○ Peripherals

● using 32 bit or 16 bit hardware timer

instead of systick

Task states

● __fls() gives first

set bit in integer

● always run task

with highest

priority

● tskid is id of

current task

● all tasks start

out disabled,

except HOOKS

task

● all scheduling

happens on

event

Running

Ready

Wait for
any

event

Wait for
specific
event

Disabled

tskid !=
__fls(tasks_ready &
tasks_enabled)

tskid ==
__fls(tasks_ready
& tasks_enabled)

tasks_enabled[tskid] = 1

task_set_event() task_set_event()

task_wait_event_mask()

__wait_evt() ||
task_wait_event()

Scheduling (example)

<< IDLE >>

HOOKS

CONSOLE

Only
enabled
task at
start

Enable
all tasks

Waiting
for event

Waiting
for event

Event
unblocked
CONSOLE

Waiting
for event

Waiting
for event

Event
unblocked
CONSOLE

P
riority

__schedule(int desched, int resched)

● Wrapper function for SVC call, passing

desched in r0, and resched in r1
● Switches to handler mode (uses MSP)

● void __schedule(int desched, int resched)
{

register int p0 asm(“r0”) = desched;
register int p0 asm(“r1”) = resched;
asm(“svc 0”);

}

svc_handler

● push r3 and lr on stack

● call __svc_handler to figure out who goes next

svc_handler:
push {r3, lr}
bl __svc_handler
ldr r3, =current_task
ldr r1, [r3]
cmp r0, r1
beq svc_handler_return
bl __switchto

svc_handler_return:
pop {r3, pc}

__svc_handler (scheduling decision)

● if desched and !current->events current task is

no longer ready

● task given by resched is now ready

● pick by priority amongst enabled tasks via

__fls(tasks_ready & tasks_enabled)
● return current in r0

task_* __svc_handler(int desched, task_id resched)
{

task_* current;

current = current_task;
if (desched && !current->events)

tasks_ready &= ~BIT(current - tasks);
tasks_ready |= BIT(resched);
next = __fls(tasks_ready & tasks_enabled);
current_task = next;
return current;

}

… back in svc_handler

● __svc_handler returned current in r0
● compare current in r0 (return value) with next

(changed by function call) in r3
● if context switch required, call __switchto
● pop r3 and lr (into pc)

svc_handler:
push {r3, lr}
bl __svc_handler
ldr r3, =current_task
ldr r1, [r3]
cmp r0, r1
beq svc_handler_return
bl __switchto

svc_handler_return:
pop {r3, pc}

__switchto

● get psp for current task into r2
● store currently active sp (msp)in r3
● make psp our stack (from r2)

● push old context (remember only got thumb)

__switchto:

mrs r2, psp

mov r3, sp

mov sp, r2

push {r4-r7}

mov r4, r8

mov r5, r9

mov r6, r10

mov r7, r11

push {r4, r7}

mov r2, sp

mov sp, r3

str r2, [r0]

ldr r2, [r1]

ldmia r2!, {r4-r7}

mov r8, r4

mov r9, r5

mov r10, r6

mov r11, r7

ldmia r2!, {r4-r7}

msr psp, r2

bx lr

__switchto

● store active sp into r2
● make r3 (old msp) our stack again

● store r2 (old psp) into old task (first member of

struct, pointer in r0)

● load new sp into r2 (first member of struct, pointer

in r1)

● restore r8-r11, then r4-r7 from new stack

● make r2 the new psp

__switchto:

mrs r2, psp

mov r3, sp

mov sp, r2

push {r4-r7}

mov r4, r8

mov r5, r9

mov r6, r10

mov r7, r11

push {r4, r7}

mov r2, sp

mov sp, r3

str r2, [r0]

ldr r2, [r1]

ldmia r2!, {r4-r7}

mov r8, r4

mov r9, r5

mov r10, r6

mov r11, r7

ldmia r2!, {r4-r7}

msr psp, r2

bx lr

remember:

struct task {
u32 sp;
[...]

};

… back in svc_handler

● pop r3 and lr (into pc) to return from exception svc_handler:
push {r3, lr}
bl __svc_handler
ldr r3, =current_task
ldr r1, [r3]
cmp r0, r1
beq svc_handler_return
bl __switchto

svc_handler_return:
pop {r3, pc}

how do we get this thing going?

__task_start:

ldr r2,=scratchpad

movs r3, #2

adds r2, #17*4

movs r1, #0

msr psp, r2

movs r2, #1

isb

msr control, r3

movs r3, r0

movs r0, #0

isb

str r2, [r3]

 bl __schedule

 movs r0, #1

 bx lr

● load scratchpad stack into r2
● make room for 17 regs (16 regs (r0-15), psr)

● make that psp
● switch thread mode stack pointer to psp
● __task_start was called with pointer to

started_scheduling variable -> set it to 1

● call __schedule (remember r0 = 0 -> don’t

deschedule, r1 contains task_id to schedule)

Task states

Running

Ready

Wait for
any

event

Wait for
specific
event

Disabled

tskid !=
__fls(tasks_ready &
tasks_enabled)

tskid ==
__fls(tasks_ready
& tasks_enabled)

tasks_enabled[tskid] = 1

task_set_event()
task_set_event()

task_wait_event_mask()

__wait_evt() ||
task_wait_event()

task_set_event(tskid, event)

● Event source is IRQ context
○ (atomically) set event flag in receiver task
○ mark task as ready
○ use pendSV to call __schedule() after IRQs are done
○ Example: Timer (process_timers)

● Event source is task context
○ (atomically) set event flag in receiver task
○ directly call __schedule()
○ Example: Mutex (mutex_unlock)

Task A

Handler

IRQ

pendsv_handler

Task B

Task A

svc_handler

__schedule

Task B

Handler

Thread

Handler

Thread

Han dler

IRQ

__wait_evt(timeout_us, resched)

● MUST not be called in IRQ context

● Arm a timer with timeout

● While (atomic) read of task->events == 0, deschedule ourselves, and reschedule ‘resched’

● If timer expires, return timeout

● Wrapped in helper

u32 task_wait_event(timeout_us)
 {

return __wait_evt(timeout_us, TASK_IDLE);
}

Example: usleep(u32 timeout)

u32 evt = 0;

u32 t0 = __hw_clock_source_read();

do {

evt |= task_wait_evt(timeout);

} while (!(evt & TASK_EVENT_TIMER) && __hw_clock_source_read() - t0 < timeout));

if (evt)

atomic_or(task->events, evt & ~TASK_EVENT_TIMER);

Atomic operations

● Cortex-M0 does not have strex etc so all we can do is disable IRQ, modify, enable IRQ

● This then will look something like this (assuming address passed in r0, and value in r1)

#define ATOMIC_OP(asm_op, a, v) do { \

uint32_t reg0; \

__asm__ __volatile__(" cpsid i\n" \

 " ldr %0, [%1]\n" \

 #asm_op" %0, %0, %2\n" \

 " str %0, [%1]\n" \

 " cpsie i\n" \

 : "=&b" (reg0) \

 : "b" (a), "r" (v) : "cc"); \

} while (0)

static inline void atomic_or(uint32_t volatile *addr, uint32_t bits)
{ ATOMIC_OP(orr, addr, bits); }

Timers / Timer Events

● Using 32 bit or 16 bit hardware timers

● Each task can have a timer, activating it via timer_arm(timestamp_t tstamp, task_id_t tskid)
● Set compare value for timer to closest deadline

● On interrupt call process_timers() which compares each tasks deadline with timer value, and

expires timers as required

● Expired timers set timer event, i.e. task that called task_wait_event() or task_wait_event_mask()

becomes ready

● To cancel a timer timer_cancel()

Future work

● Add OS awareness to OpenOCD (kinda works already, just gotta clean up)

● Port to RiscV (just because)

● Port to Microblaze

Questions?

email:

moritz.fischer@ettus.com / mdf@kernel.org

gpg-fingerprint:

135A 2159 8651 9D68 DA5B C3F1 958A 4C04 7304 62CC

github:

mfischer

