it's a Tree... It's a Graph...
it'sa Traph!!!!

Designing an on-file
multi-level graph index
for the Hyphe web crawler

Paul Girard « Mathieu Jacomy « Benjamin Ooghe-Tabanou ¢ Guillaume Plique

https://twitter.com/paulanomalie
https://twitter.com/jacomyma
https://twitter.com/boogheta
https://twitter.com/yomguithereal

SciencesPo

MEDIALAB

Equipex DIME-SHS ANR-10-EQPX-19-01

http://www.medialab.sciences-po.fr/

https://medialab.github.io/hyphe-traph/fosdem2018
http://bit.ly/fosdem-traph

https://medialab.github.io/hyphe-traph/fosdem2018
http://bit.ly/fosdem-traph

Hyphe?

A web corpus curation tool

A research-driven web crawler

Demo: http://hyphe.medialab.sciences-po.fr/demo/
v1.0 finally easily installable via Docker

http://hyphe.medialab.sciences-po.fr/demo/
https://github.com/medialab/hyphe

URL HTTP://EN.WIKIPEDIA.ORG/WIKI/CAT
| Tokeniging
Tokeniged URL wTTP:// EN. WIKIPEDIA .ORG /WIKI /CAT
| Reordering

| R .orec | WIKIPEDIA ‘ EN. | JWIKI ‘ /CAT

..areal LRU actually looks like this:

s:https|h:org|h:wikipedia|h:en|p:wiki|p:Cat|

.ORG | WIKIPEDIA | EN. | /WIKI | /CAT
.ORG | WIKIPEDIA | EN. | /WIKI | /BIRD

.ORG | WIKIPEDIA | EN. | /JWIKI | /FISH

?TITLE=CAT&ACTION=HISTORY

.ORG | WIKIPEDIA | EN. /W‘ /INDEX.PHP

LRUSs hauve a tree structure

o -ORG_WIKIPEDIA__EN.__/WIKI__/CAT
/BIRD
/FISH

| /W__/INDEX.PHP_?TITLE=CAT&ACTION=HISTORY

Web entities are represented as flags * in the LRU tree

._.ORG_mIKIPEDIA_EN._IWIKI /CAT e -ORG___WIKIPEDIA___EN.__ /WIKI___ /CAT
—E/BIRD /BIRD
/FISH /FISH

Wikipedia BIRD article

._.ORG_WIKIPEDIA_EN._/WIKI /CAT ._.ORG_WIKIPEDIA_EN._/WIKI /CAT
/BIRD \ /BIRD
/FISH /FISH

Wikipedia in English Wikipedia in English l

+ each Wikipedia article

Audrey studies Web entities
the permaculture = ACTORS
community

Web entities are websites (domains) or profiles on platforms

.__.BE_EAFERMEDUBOISSONNET_% :
_.FR_KGRIDURABLEﬁ :

L .COM PERMACULTURE .
FACEBOOK PERMABIOSE;% :
TERRAPERMA_% :

Bernhard studies how
animals are represented
on Wikipedia

WIKIPEDIA

Web entities are Wikipedia articles

e—-ORG_WIKIPEDIA EN. ‘/WIKI_

|

This “rule flag” spawns flags
at the next depths level

Fcar

| P/B1RD
P F1sH
|7/ snake
| /raBBTT
| /oEER

r/CO LGATE

r/CAPYBARA

Web entities
= DOCUMENTS

Carla studies how Web entities
immigration is discussed = ACTORS
in the public debate + DOCUMENTS

i\i i ﬁ\ﬁ Who cites what?

THEGUARDIAN.COM

Web entities are websites, blogs, profiles (actors)
+ some special articles from the Guardian newspaper

e— - COM SOME_BLOG% :
SOME_OTH ER_BLOG_'% :

THEGUARDIAN__/NEWS__/TRUMP-SAYS-STUPID

| /BITCOIN-RISES

_r/M IGRANT-BOAT-CAPSIZES
_r/SKILLED—MIGRANTS—PROTEST
| /CHELSEA-WINS
_r/MIGRANTS—BRAWL—IN—CALAIS
| /RTIHANNA-SINGS
_r/MIGRATION—CRISIS

A tree of URLs and a graph of links

7 web entities

Carla studies how ®
immigration is discussed -~ @

in the public debate

Structure's requirements

e Add tens of millions of LRUs

e Add hundreds of millions of links

e Edit web entity boundaries (move the flags) without re-indexing
e Getall the pages of a web entity

e Getthe web entity graph sitting on top of the pages' one

It's a tree

it's a graph

How to implement that?

Lucene

A tree?

e index of pages
o filter by prefix

A graph?

e index of pages couples
e agregate links by couples of prefixes

Problem

e Links between web entities are agregates
e web entities are dynamic

->WE links should be computed, not stored

Remember Bernhard?

Bernhard studies how
animals are represented
on Wikipedia

WIKIPEDIA

Web entities are Wikipedia articles

e—-ORG_WIKIPEDIA EN. ‘/WIKI_

|

This “rule flag” spawns flags
at the next depths level

Fcar

| P/B1RD
P F1sH
|7/ snake
| /raBBTT
| /oEER

r/CO LGATE

r/CAPYBARA

Web entities
= DOCUMENTS

Limits

o Agregate links for list of prefixes
e but NOT for sub-prefixes!

-> complex slow queries

Turnarounds

e Pages/Web entities links caching in Lucene
e Web entities links caching in RAM

indexation is slower than
crawling...

Coding retreat

One week
Four brains
TANT LAB @Copenhaguen

2 prototypes
® Neo4J POC

= Java Tree POC

http://www.tantlab.aau.dk/
https://github.com/medialab/hyphe-neo4j-poc
https://github.com/medialab/hyphe-java-tree-poc

1.
Prototype A - Neo4J

Atree? A graph?

Challenge: complex querying

e UNWIND

e FOREACH

e REDUCE

e CASE

e COALESCE

e stored procedures...

Indexing pages

UNWIND $lrus stems

[{lru: ""}] stems stems

stems[size(stems)-1].1lru lru, extract(n range(1l, size(stems) - 1) | {first
UNWIND tuples tuple

ON

ooTo

ON

T oToToToToToOo

ON

ooToT

H 8

(CASE WHEN NOT coalesce(tuple.second.page, false) THEN [1] ELSE [] END |
(a:Stem {lru: tuple.first.lru})
(b:Stem {lru: tuple.second.lru})

.type = tuple.second.type,
.stem = tuple.second.stem,
.createdTimestamp = timestamp()

(a)<-[:PARENT]-(b)

(CASE WHEN coalesce(tuple.second.page, false) THEN [1] ELSE [] END |
(a:Stem {lru: tuple.first.lru})
(b:Stem {lru: tuple.second.lru})

.type = tuple.second.type,

.stem = tuple.second.stem,

.createdTimestamp = timestamp(),
.crawledTimestamp = tuple.second.crawlTimestamp,
.crawlDepth = tuple.second.crawlDepth,

.linked = coalesce(tuple.second.linked, false),
:Page

.crawlDepth

CASE

WHEN tuple.second.crawlDepth < b.crawlDepth
THEN tuple.second.crawlDepth

ELSE b.crawlDepth

END,

.crawled = coalesce(tuple.second.crawled, b.crawled),
.linked = coalesce(tuple.second.linked, b.linked),
:Page

(a)<-[:PARENT]-(b)

stems[n

1]

second

stems[n] })

tuples

https://github.com/medialab/hyphe-neo4j-poc/blob/master/queries/core.cypher#L66-L164

Links agregation V8 and 10 (out of 10)

// name: get webentity links v8

MATCH path = (sourcePage:Page)-|:PARENT*0..]->(:Stem)- [:PREFIX]|->(:WebEntity)
WITH sourcePage, path

ORDER BY length(path) ASC

WITH sourcePage, head(collect(last(nodes(path)))) AS sourceWe

MATCH (sourcePage) - | :LINK]|->(targetPage:Page)

WITH sourcePage, targetPage, sourceWe, count(®) AS weight

MATCH path = (targetPage)-|:PARENT*0..]->(:Stem)-[:PREFIX]->(:WebEntity)

WITH sourcePage, targetPage, path, sourceWe, weight

ORDER BY length(path) ASC

WITH sourcePage, targetPage, sourceWe, head(collect(last(nodes(path)))) AS targetWe, weight
RETURN sourceWe.name, targetWe.name, sum(weight) AS weight;

[...]

// name: get webentity links v10

MATCH (source:Page)- | :LINK|->(target:Page)

CALL hyphe.traverse(source) YIELD node A5 sourceWe
CALL hyphe.traverse(target) YIELD node AS targetWe
RETURN sourcewWe.name, targetWe.name;

https://github.com/medialab/hyphe-neo4j-poc/blob/master/queries/core.cypher#L183-L289

It's not as straightforward to traverse trees in Neo4j as it seems.

V.
Prototype B - The Traph

Designing our own on-file index

To store a somewhat complicated multi-level graph of URLs

People told us NOT to do it

It certainly seems crazy...

e Building an on-file structure from scratch is not easy.
e Why would you do that instead of relying on some already existing solution?
e Whatifit crashes?

e \What if your server unexpectedly shuts down?

Not so crazy

e You cannot get faster than a tailored data structure (that's a fact).
e We don't need deletions (huge win!).
e No need for an ACID database (totally overkill).

We just need an index

An index does not store any "original" data because...
...a MongoDB already stores the actual data in a reliable way.
| insert joke about MongoDB being bad |

This means the index can be completely recomputed and its utter destruction
does not mean we can lose information.

So, what's a Traph?

i bl .
L % -t . .
", \iﬁ.’. \!

B> (- G
~ ITSATRAPH:

The traph is a "subtle" mix between a Trie and a Graph.

Hence the incredibly innovative name...

A Trie of LRUs

e C_O_M_|[[S_O_M_E__ B_L_O_G_|4%:
E_T_H_E_R___B_L_O_G_ | _% ;

T_H_E_G_U_ARD_TIAN_|_/_NEWS_|_ /T RUMP_-_SAYS -_S T UP_TID_|
/_B_I_T_C_O_I_N_-_R_I_S_E_S_|
J/_M_I_G_R_A_N_T_-_B_O_A_T_-_C_A_P_S_I_7Z E_S_|

Carla studies how /_S_K_I_L_L_ED_-_M_I G RANT_S -_PROT_EST_|

immigration is discussed /CHELSEA-WTINS|

in the public debate /-M_I_G RANTS -BRAWL-_TN-CAILATIS|
J/_R_I_H_A_N_N_A_-_S_T_N_G_S_|
/_M_I_G_R_A_T_I_O_N_-_C RIS TI_S_|

Storing a Trie on file

Using fixed-size blocks of binary data (ex: 10 bytes).

We can read specific blocks using pointers in a random access fashion.

Accessing a specific's page node is doneinO(m).

[char|flags|next|child|parent|outlinks|inlinks]

A Graph of pages

The second part of the structure is a distinct file storing links between pages.

We need to store both out links and in links.

Storing links on file

Once again: using fixed-sized blocks of binary data.

We'll use those blocks to represent a bunch of linked list of stubs.

[target |weight |next]

Linked lists of stubs

{LRUTriePointer} => [targetA, weight] -> [targetB, weight] -:

We can now store our links.

We have a graph of pages!

What about the multi-level graph?

What we want is the graph of webentities sitting above the graph of pages.

We "just" need to flag our Trie's nodes for webentities' starting points.

o C O_M_|

Carla studies how
immigration is discussed
in the public debate

So now, finding the web entity to which belongs a page is obvious when traversing
the Trie.

What's more, we can bubble up inO(m), if we need to, when following pages' links
(this can also be easily cached).

o —C_O_M_|[S_O_M_E__ B_L_O_G_|4%:
E_T_H_E_R___B_L_O_G_ | _% :

T_H_E_G_U_A_R_D_TI_A_N_|_/_N_E_W_S_|_/_T_R_U_M_P_-_S_A_Y_S_-_S_T_U_P_I_D_|
/_B_I_T_C_O_I_N_-_R_TI_S_E_S_|
/_M_I_G_R_A_N_T_-_B_O_A_T_-_CAP_S I 7 ES_|

Carla studies how /_S_K_I_L_L_ED_-_M_TI G RANT_S_ -_P_RO_T_ES_T_|

immigration is discussed /CHELSEA-WTINS|

in the public debate /-M_I_G_R_A_N_T_S_- B RAWL -_TN-_CAL_ATS_|
J_R_T_H_A_N_N_A_-_S_T_N_G_S_|
/_M_I_G_R_A_T_I_O_N_-_C_R_I_S_TI_S_|

What's more, if we want to compute the webentities' graph, one just needs to
perform a DFS on the Trie.

This seems costly but:

e No other way since we need to scan the whole index at least once.
e The datastructure is quite lean and you won't read so much.

Was it worth it?

Benchmark on a 10% sample from a sizeable corpus about privacy.

e Number of pages: 1840377

e Number of links: 5395 253

e Number of webentities: 20 003

e Number of webentities' links: 30 490

Indexation time

e Lucene-1 hour&55 minutes
e Neo4j-.1hour &4 minutes
e Traph 20 minutes

Graph processing time

e Lucene-45 minutes
e Neo4j .6 minutes
e Traph .2 minutes 35 seconds

Disk space

e Lucene -« 740 megabytes
e Neo4j. 1.5 gigabytes
e Traph .1 gigabyte

After Copenhagen

We decided to redevelop the structure in python to limit the amount of different
languages used by Hyphe's core.

We made some new discoveries on the way and improved the performance of the
Traph even more.

https://github.com/medialab/hyphe-traph

https://github.com/medialab/hyphe-traph

Bonus section

e Single character trie is slow: stem level is better

e We had to find a way to store variable length stems

e Results were bad at beginning because of linked lists

e \We had to organize children as binary search trees: this is a ternary search tree

e We tried to use auto-balancing BSTs but this was useless since crawl order
generate enough entropy

e Finally we switched to using varchars(255) rather than trimming null bytes to
double performance.

(Related slides are vertical)

The issue with single characters

Our initial implementation was using single LRU characters as nodes.
Wastes a lot of spaces: more nodes = more pointers, flags etc.

More disk space = longer queries because we need to read more data from the
disk.

We can do better: nodes should store LRU stems!

o —C_O_M_|[S_O_M_E__ B_L_O_G_|4%:
E_T_H_E_R___B_L_O_G_ | _% :

T_H_E_G_U_A_R_D_TI_A_N_|_/_N_E_W_S_|_/_T_R_U_M_P_-_S_A_Y_S_-_S_T_U_P_I_D_|
/_B_I_T_C_O_I_N_-_R_I_S_E_S_|
/_M_I_G_R_A_N_T_-_B_O_A T -_CAP_S I 7ES_|

Carla studies how /_S_K_I_L_L_ED_-_M_TI G RANT_S_ -_P_RO_T_ES_T_|

immigration is discussed /CHELSEA-WTINS|

in the public debate /-M_I_G_R_A_N_T_S_- B RAWL -_TN-_CAL_ATS_|
J_R_T_H_A_N_N_A_-_S_T_N_G_S_|
/_M_I_G_R_A_T_I_O_N_-_C_R_I_S_TI_S_|

._.COM__EOME_BLOG

— T -
EOME_OTHER_BLOG

_EH EGUARDIAN____/NEWS_

Carla studies how
immigration is discussed
in the public debate

—T— -

__/TRUMP-SAYS-STUPID

[_/BITCOIN-RISES

._r/M IGRANT-BOAT-CAPSIZES
.ESKILLED—MIGRANTS—PROTEST
[/CHELSEA-WINS
__r/MIGRANTS— BRAWL-IN-CALAIS
[/RIHANNA-SINGS

EMIGRATION—CRISIS

Fragmented nodes

Problem: stems can have variable length.

Fixed-size binary blocks => we need to be able to fragment them.

[stem|flags|next |parent |outlinks|inlinks] ... [tail?]

has tail?

Results were disappointing...

e Character level « 5400 000 reads /1 001 000 total blocks
e Stem level - 12 750 000 reads / 56 730 total blocks

Stem level had far less blocks and was orders of magnitudes lighter.

Strangely, it was way slower because we had to read a lot more.

Linked lists hell

Node's children stored as linked lists.
This means accessing a particular child isO(n).

At character level, a list cannot be larger than 256 since we store a single ascii

byte.

At stem level, those same linked lists will store a lot more children.

The Ternary Search Tree

We had to organize children differently.

We therefore implemented a Ternary Search Tree.

This is a Trie whose children are stored as binary search trees so we can access
childrenin0(log n).

Indexation time

e Python character level traph - 20 minutes
e Python stem level traph « 8 minutes

Graph processing time

e Python character level traph « 2 minutes 43 seconds
e Python stem level traph « 27 seconds

Disk space

e Python character level traph - 827 megabytes
e Python stem level traph - 270 megabytes

About balancing

Binary search trees can degrade to linked lists if unbalanced.
We tried several balanced BSTs implementations: treap & red-black.
This slowed down writes and did nothing to reads.

It seems that the order in which the crawled pages are fed to the structure
generate sufficient entropy.

Takeaway bonus: varchars(255)

Sacrificing one byte to have the string's length will always be faster than manually
dropping null bytes.

+
=3

23

158

253

traph/lru_trie/node.py

@@ -20,7 +20,7 @@

architecture).

TODO: it's possible to differentiate the tail's blocks format if needed
-LRU_TRIE_NODE_FORMAT = '75sBI6Q’
+LRU_TRIE_NODE_FORMAT = '75pBI6Q’

LRU_TRIE_NODE_BLOCK_SIZE = struct.calcsize(LRU_TRIE_NODE_FORMAT)
LRU_TRIE_FIRST_DATA_BLOCK = LRU_TRIE_HEADER_BLOCKS * LRU_TRIE_NODE_BLOCK_SIZE
LRU_TRIE_STEM_SIZE = 75

@@ -155,7 +155,7 @@ def read(self, block):

while True:

data = struct.unpack(LRU_TRIE_NODE_FORMAT, self.storage.read(current_block))

- chars = data[@].rstrip('\x@e")

data[®e]

+ chars

chunks.append(chars)

@@ -250,7 +250,7 @@ def is_tail(self):

def stem(self):
chars = self.data[LRU_TRIE_NODE_STEM]

- return chars.rstrip('\xee') + self.tail

+ return chars + self.tail

def set_stem(self, stem):

View

v

Huge win! - 2x boost in performance.

Here we are now.
We went from 45 minutes to 27 seconds!

133 INDEXED PAGES

The web is the bottleneck again!

The current version of Hyphe uses this index in production!

https://github.com/medialab/hyphe

A final mea culpa

Yes we probably used Lucene badly.
Yes we probably used Neo4j badly.

But. If you need to twist a system that much - by tweaking internals and/or using
stored procedures - aren't you in fact developing something else?

But...

We are confident we can further improve the structure.

And that people in this very room can help us do so!

Thanks for your attention.

