
It's a Tree... It's a Graph...It's a Tree... It's a Graph...
It's a Traph!!!!It's a Traph!!!!

Designing an on-�le
multi-level graph index

for the Hyphe web crawler

 • • • Paul Girard Mathieu Jacomy Benjamin Ooghe-Tabanou Guillaume Plique

https://twitter.com/paulanomalie
https://twitter.com/jacomyma
https://twitter.com/boogheta
https://twitter.com/yomguithereal

Equipex DIME-SHS ANR-10-EQPX-19-01

http://www.medialab.sciences-po.fr/

-
https://medialab.github.io/hyphe-traph/fosdem2018

http://bit.ly/fosdem-traph

https://medialab.github.io/hyphe-traph/fosdem2018
http://bit.ly/fosdem-traph

Hyphe?Hyphe?
A web corpus curation tool
A research-driven web crawler
Demo:

 �nally easily installable via Docker
http://hyphe.medialab.sciences-po.fr/demo/

v1.0

http://hyphe.medialab.sciences-po.fr/demo/
https://github.com/medialab/hyphe

A tree of URLs and a graph of linksA tree of URLs and a graph of links

Structure's requirementsStructure's requirements
Add tens of millions of LRUs
Add hundreds of millions of links
Edit web entity boundaries (move the �ags) without re-indexing
Get all the pages of a web entity
Get the web entity graph sitting on top of the pages' one

It's a treeIt's a tree

It's a graphIt's a graph

How to implement that?How to implement that?

I.I.
LuceneLucene

A tree?A tree?
index of pages
�lter by pre�x

A graph?A graph?
index of pages couples
agregate links by couples of pre�xes

ProblemProblem
Links between web entities are agregates
web entities are dynamic

-> WE links should be computed, not stored

Remember Bernhard?Remember Bernhard?

LimitsLimits
Agregate links for list of pre�xes
but NOT for sub-pre�xes!

-> complex slow queries

TurnaroundsTurnarounds
Pages/Web entities links caching in Lucene
Web entities links caching in RAM

indexation is slower thanindexation is slower than
crawling...crawling...

II.II.
Coding retreatCoding retreat

One week
Four brains

2 prototypes
TANT LAB @Copenhaguen

Neo4J POC
Java Tree POC

http://www.tantlab.aau.dk/
https://github.com/medialab/hyphe-neo4j-poc
https://github.com/medialab/hyphe-java-tree-poc

III.III.
Prototype A - Neo4JPrototype A - Neo4J

A tree? A graph?A tree? A graph?

Challenge: complex queryingChallenge: complex querying
UNWIND
FOREACH
REDUCE
CASE
COALESCE
stored procedures...

Indexing pages

https://github.com/medialab/hyphe-neo4j-poc/blob/master/queries/core.cypher#L66-L164

Links agregation V8 and 10 (out of 10)

https://github.com/medialab/hyphe-neo4j-poc/blob/master/queries/core.cypher#L183-L289

It's not as straightforward to traverse trees in Neo4j as it seems.

IV.IV.
Prototype B - The TraphPrototype B - The Traph

Designing our own on-�le indexDesigning our own on-�le index
To store a somewhat complicated multi-level graph of URLs

People told us NOT to do itPeople told us NOT to do it

It certainly seems crazy...It certainly seems crazy...

Building an on-�le structure from scratch is not easy.
Why would you do that instead of relying on some already existing solution?
What if it crashes?
What if your server unexpectedly shuts down?

Not so crazyNot so crazy

You cannot get faster than a tailored data structure (that's a fact).
We don't need deletions (huge win!).
No need for an ACID database (totally overkill).

We just need an indexWe just need an index

An index does not store any "original" data because...
...a MongoDB already stores the actual data in a reliable way.
[insert joke about MongoDB being bad]
This means the index can be completely recomputed and its utter destruction
does not mean we can lose information.

So, what's a Traph?So, what's a Traph?

The traph is a "subtle" mix between a Trie and a Graph.
Hence the incredibly innovative name...

A Trie of LRUsA Trie of LRUs

Storing a Trie on �leStoring a Trie on �le
Using �xed-size blocks of binary data (ex: 10 bytes).

We can read speci�c blocks using pointers in a random access fashion.

Accessing a speci�c's page node is done in O(m).

[char|flags|next|child|parent|outlinks|inlinks]

A Graph of pagesA Graph of pages
The second part of the structure is a distinct �le storing links between pages.

We need to store both out links and in links.

(A)->(B)

(A)<-(B)

Storing links on �leStoring links on �le
Once again: using �xed-sized blocks of binary data.

We'll use those blocks to represent a bunch of linked list of stubs.

[target|weight|next]

Linked lists of stubsLinked lists of stubs

{LRUTriePointer} => [targetA, weight] -> [targetB, weight] ->

We can now store our links.

We have a graph of pages!

What about the multi-level graph?What about the multi-level graph?
What we want is the graph of webentities sitting above the graph of pages.

We "just" need to �ag our Trie's nodes for webentities' starting points.

So now, �nding the web entity to which belongs a page is obvious when traversing
the Trie.

What's more, we can bubble up in O(m), if we need to, when following pages' links
(this can also be easily cached).

What's more, if we want to compute the webentities' graph, one just needs to
perform a DFS on the Trie.

This seems costly but:

No other way since we need to scan the whole index at least once.
The datastructure is quite lean and you won't read so much.

Was it worth it?Was it worth it?
Benchmark on a 10% sample from a sizeable corpus about privacy.

Number of pages: 1 840 377
Number of links: 5 395 253
Number of webentities: 20 003
Number of webentities' links: 30 490

Indexation timeIndexation time
Lucene • 1 hour & 55 minutes
Neo4j • 1 hour & 4 minutes
Traph • 20 minutes

Graph processing timeGraph processing time
Lucene • 45 minutes
Neo4j • 6 minutes
Traph • 2 minutes 35 seconds

Disk spaceDisk space
Lucene • 740 megabytes
Neo4j • 1.5 gigabytes
Traph • 1 gigabyte

After CopenhagenAfter Copenhagen
We decided to redevelop the structure in python to limit the amount of different
languages used by Hyphe's core.

We made some new discoveries on the way and improved the performance of the
Traph even more.

https://github.com/medialab/hyphe-traph

https://github.com/medialab/hyphe-traph

Bonus sectionBonus section
Single character trie is slow: stem level is better
We had to �nd a way to store variable length stems
Results were bad at beginning because of linked lists
We had to organize children as binary search trees: this is a ternary search tree
We tried to use auto-balancing BSTs but this was useless since crawl order
generate enough entropy
Finally we switched to using varchars(255) rather than trimming null bytes to
double performance.

(Related slides are vertical)

The issue with single charactersThe issue with single characters
Our initial implementation was using single LRU characters as nodes.

Wastes a lot of spaces: more nodes = more pointers, �ags etc.

More disk space = longer queries because we need to read more data from the
disk.

We can do better: nodes should store LRU stems!

Fragmented nodesFragmented nodes
Problem: stems can have variable length.

Fixed-size binary blocks => we need to be able to fragment them.

[stem|flags|next|parent|outlinks|inlinks] ... [tail?]
 ^
 has_tail?

Results were disappointing...Results were disappointing...
Character level • 5 400 000 reads / 1 001 000 total blocks
Stem level • 12 750 000 reads / 56 730 total blocks

Stem level had far less blocks and was orders of magnitudes lighter.

Strangely, it was way slower because we had to read a lot more.

Linked lists hellLinked lists hell
Node's children stored as linked lists.

This means accessing a particular child is O(n).

At character level, a list cannot be larger than 256 since we store a single ascii
byte.

At stem level, those same linked lists will store a lot more children.

The Ternary Search TreeThe Ternary Search Tree
We had to organize children differently.

We therefore implemented a Ternary Search Tree.

This is a Trie whose children are stored as binary search trees so we can access
children in O(log n).

Indexation timeIndexation time
Python character level traph • 20 minutes
Python stem level traph • 8 minutes

Graph processing timeGraph processing time
Python character level traph • 2 minutes 43 seconds
Python stem level traph • 27 seconds

Disk spaceDisk space
Python character level traph • 827 megabytes
Python stem level traph • 270 megabytes

About balancingAbout balancing
Binary search trees can degrade to linked lists if unbalanced.

We tried several balanced BSTs implementations: treap & red-black.

This slowed down writes and did nothing to reads.

It seems that the order in which the crawled pages are fed to the structure
generate suf�cient entropy.

Takeaway bonus: varchars(255)Takeaway bonus: varchars(255)
Sacri�cing one byte to have the string's length will always be faster than manually
dropping null bytes.

Huge win! - 2x boost in performance.

Here we are now.
We went from 45 minutes to 27 seconds!

The web is the bottleneck again!

The current version of uses this index in production!Hyphe

https://github.com/medialab/hyphe

A �nal mea culpaA �nal mea culpa
Yes we probably used Lucene badly.

Yes we probably used Neo4j badly.

But. If you need to twist a system that much - by tweaking internals and/or using
stored procedures - aren't you in fact developing something else?

But...But...
We are con�dent we can further improve the structure.

And that people in this very room can help us do so!

Thanks for your attention.

