

Everything is a device!

The MH microkernel and the MRG runtime.

What happens when you build a kernel based on a idea you had in a pub

Gianluca Guida
glguida@gmail.com

Bruxelles, 3 Feb 2018

Engineer at ZEDEDA, Inc. (stealth)

Past: Apple, Mimecast, Bromium, VUAmsterdam, Citrix, XenSource.

OS affiliations: MINIX3, GNU HURD, Xen

Personal projects for fun, curiosity, learning

– this is one of my projects

– building random kernels is my hobby since late ‘90s

whoami

outline

I. Introduction to MH/MRG

II. MH kernel architecture

III.NetBSD kernel components (rump)

IV.rumprun unikernels in MH/MRG

V. Conclusion + Q&A

Introduction to MH/MRG

intro MH

● Microkernel
● Complete name is murgiahack

– murgia, the hills where I grew up (Apulia, Italy)

– hack, not a compliment to my code

● Background personal project
● Timeline:

– 2015: started

– 2016: presented at FOSDEM2016 (this devroom)

– mid 2016: on hold

– late 2017: development restarted

why MH

● Experiment with hardware
– understanding the hardware I own

– interacting with devices as directly as possible

● Experiment with software
– create a modular system

– use existing software in different ways

● Having fun
– trying something relatively different

– see faces of friends when you explain what it is

MH architecture

● Everything is a device(!):
– An hardware device is exposed as a device

– Kernel services (e.g., timers) are exposed as devices

– A process may expose its services as devices

● The interface is low level:
– Device are attached to a process bus

– Memory is handled through user-level #PF

– Syscall bus interface is hardware like: IRQs, IOMMUs, I/O ports

● The rest is UNIX-ish:
– Fork to create new processes

– UID/GID to handle resources

MH process interface

intro MRG

● Runtime library and basic services
● Basic primitives

– Fibers

– Event handling

– Memory management

– Device drivers libraries

● Basic system services
– Bootstrap server

– Console

● Native environment for MH processes
– Exposes architecture of the kernel

– Abstracts low level details of kernel interface

MH kernel architecture

MH kernel architecture

User
Devices

System
Bus

Platform
Device

HW
Devices

user
space

devices

Machine Dependent

Machine Independent

HW Platform

System
Device

Timerpmap

schedmm cpu

pcpu

bootstrap

MH kernel architecture

● MD and MI code relatively traditional
● Different type of devices, same interface:

– System Device

– Platform and HW Devices

– User Devices

● bootstrap creates HW Devices
● User space level devices are implemented in kernel by

the usrdev device type.

NetBSD kernel components
(rump)

rump kernels

● The rump kernel project has componentised the NetBSD kernel
– When this happen, a lot of interesting thing can be done!

● MH interest is in reusing fileystem, network drivers and stack.
● Porting rump to your system is EASY

– Interface with the external world has been condensated in a sane, easily
portable component called librumpuser

– Writing librumpuser for mrg (called librumpmrg) and get it to an okay state
took less than a day

● Fear not, fighting the build system will entertain you for weeks!

● After linking a few librump modules, I can use MRG’s own libahci to
read and write ext4fs (or anything else supported by NetBSD) from
real hardware. I am running stable file system code in a young OS!

rump + MRG = <3

● MRG building blocks are libraries, as it is for rump
components.

● In a world where a everything is a device, device
drivers are libraries in userspace. Rump gives us
exactly that!

● I can create a single server that handles different
devices based on linking.
– Okay, it is a makefiles nightmare but cool!

● “Look ma’, network drivers!”

rumprun unikernels in MH/MRG
(WIP)

rumprun unikernels

● rumprun is a set of tools and an build of a full rump kernel
system.

● It allows to run unmodified POSIX programs as
unikernels in a system that exposed a very simple and
lowlevel interface.

● rumprun-packages is a repository of ready made unikernels
(apache2, mysql, etc.)

● Xen and real hardware currently supported.
● rumprun implements its own librumpuser
● Porting interface is called bmk

rumprunmrg

● rumprunmrg is a port of rumprun for MRG.
● Implements its own bmk interface.
● Porting the bmk interface to your system is easy!
● The build system is a tad bit more complicated than

rump.
● Took about two days to port rumprun to MRG.
● First result was MH booting into mpg123

– “I might not have a shell, but I can decode MP3s!”

Conclusion and Q&A

● The goal of being fun has been reached
● Running unikernels as processes in a world

where everything is abstracted into an
hardware interface is strangely natural.

● Lots to do!
● Code all online (BSD license)

– But it is a bit scattered, do ask me if you can’t find
things.

Questions?

Thank you for listening!

Website:

mhsys.org

Github:

github.com/glguida/mh

Thank you!

