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Personal projects for fun, curiosity, learning

– this is one of my projects

– building random kernels is my hobby since late ‘90s
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Introduction to MH/MRG



  

intro MH

● Microkernel
● Complete name is murgiahack

– murgia, the hills where I grew up (Apulia, Italy)

– hack, not a compliment to my code

● Background personal project
● Timeline:

– 2015: started

– 2016: presented at FOSDEM2016 (this devroom)

– mid 2016: on hold

– late 2017: development restarted



  

why MH

● Experiment with hardware
– understanding the hardware I own

– interacting with devices as directly as possible

● Experiment with software
– create a modular system

– use existing software in different ways

● Having fun
– trying something relatively different

– see faces of friends when you explain what it is



  

MH architecture

● Everything is a device(!):
– An hardware device is exposed as a device

– Kernel services (e.g., timers) are exposed as devices

– A process may expose its services as devices

● The interface is low level:
– Device are attached to a process bus

– Memory is handled through user-level #PF

– Syscall bus interface is hardware like: IRQs, IOMMUs, I/O ports

● The rest is UNIX-ish:
– Fork to create new processes

– UID/GID to handle resources



  

MH process interface



  

intro MRG

● Runtime library and basic services
● Basic primitives

– Fibers

– Event handling

– Memory management

– Device drivers libraries

● Basic system services
– Bootstrap server

– Console

● Native environment for MH processes
– Exposes architecture of the kernel

– Abstracts low level details of kernel interface



  

MH kernel architecture



  

MH kernel architecture
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MH kernel architecture

● MD and MI code relatively traditional
● Different type of devices, same interface:

– System Device

– Platform and HW Devices

– User Devices

● bootstrap creates HW Devices
● User space level devices are implemented in kernel by 

the usrdev device type.



  

NetBSD kernel components 
(rump)



  

rump kernels

● The rump kernel project has componentised the NetBSD kernel
– When this happen, a lot of interesting thing can be done!

● MH interest is in reusing fileystem, network drivers and stack.
● Porting rump to your system is EASY

– Interface with the external world has been condensated in a sane, easily 
portable component called librumpuser

– Writing librumpuser for mrg (called librumpmrg) and get it to an okay state 
took less than a day

● Fear not, fighting the build system will entertain you for weeks!

● After linking a few librump modules, I can use MRG’s own libahci to 
read and write ext4fs (or anything else supported by NetBSD) from 
real hardware. I am running stable file system code in a young OS!



  

rump + MRG = <3

● MRG building blocks are libraries, as it is for rump 
components.

● In a world where a everything is a device, device 
drivers are libraries in userspace. Rump gives us 
exactly that!

● I can create a single server that handles different 
devices based on linking.
– Okay, it is a makefiles nightmare but cool!

● “Look ma’, network drivers!”



  

rumprun unikernels in MH/MRG
(WIP)



  

rumprun unikernels

● rumprun is a set of tools and an build of a full rump kernel 
system.

● It allows to run unmodified POSIX programs as 
unikernels in a system that exposed a very simple and 
lowlevel interface.

● rumprun-packages is a repository of ready made unikernels 
(apache2, mysql, etc.)

● Xen and real hardware currently supported.
● rumprun implements its own librumpuser
● Porting interface is called bmk



  

rumprunmrg

● rumprunmrg is a port of rumprun for MRG.
● Implements its own bmk interface.
● Porting the bmk interface to your system is easy!
● The build system is a tad bit more complicated than 

rump.
● Took about two days to port rumprun to MRG.
● First result was MH booting into mpg123

– “I might not have a shell, but I can decode MP3s!”



  

Conclusion and Q&A

● The goal of being fun has been reached
● Running unikernels as processes in a world 

where everything is abstracted into an 
hardware interface is strangely natural.

● Lots to do!
● Code all online (BSD license)

– But it is a bit scattered, do ask me if you can’t find 
things.



  

Questions?

Thank you for listening!

Website: 

mhsys.org

Github:

github.com/glguida/mh



  

Thank you!


