Binary packaging for HPC with Spack

HPC, Big Data, and Data Science Devroom at FOSDEM 2018

Brussels, Belgium
Todd Gamblin

Center for Applied Scientific Computing
Feburary 4, 2018 LLNL

LLNL-PRES-745747 ‘ ’ M Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory : 1
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Natlonal Laboratory

Spack is a general purpose, from-source package manager

= |nspired somewhat by homebrew and nix

= Targets HPC and scientific computing

Community is growing!

= Goals:

Facilitate experimenting with performance options

Flexibility. Make these things easy:
* Build packages with many different:

LOC over time in packages by org

@Spack

https://spack.io

50000 -

ANL mmm Ulowa EmE Max-Planck-Inst
- compilers/versions/build options N e Perimeterinst e
+ Change compilers and flags in builds (keep provenance) ***] ePrL OpenFoAM m=z0n
. . N N . . W unknown irchhoffinstitute m Kre
* Swap implementations of ABl-incompatible libraries 20000 | == FAU NASA-GISS Kitware
- MPI, BLAS, LAPACK, others like jpeg/jpeg-turbo, etc. f Genentech W= SJTU = Other
— Build software stacks for scientific simulation and 20000 {
analysis ooos.
— Run on laptops, Linux clusters, and some of the
largest supercomputers in the world " o o -
Vv Vv Vv Vv
Lawrence Livermore National Laboratory 0 github.com/spack Y @spackpm NIYSE

Spec CLI syntax makes it easy to install different ways

spack install
spack install
spack install
spack install
spack install
spack install

©“ A B A A

mpileaks unconstrained
mpileaks@3.3 @ custom version
mpileaks@3.3 %gcc@4.7.3 % custom compiler
mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
mpileaks@3.3 cflags="-03 —g3" setting compiler flags

mpileaks@3.3 “mpich@3.2 %gcc@4.9.3 ~ dependency constraints

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— A (caret) adds constraints on dependencies

Lawrence Livermore National Laboratory
LLNL-PRES-745747

O github.com/spack %" @spackpm

Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', "abfe@b7faabe7aze’)
version('8.1.2", 'bf@3b33375afabof’)
version('8.1.1", 'd1a@4e995b7aa7@9’)

depends_on("cmake", type="build")

depends_on("libelf", type="1link")
depends_on("libdwarf", type="1ink™")
depends_on("boost @1.42: +multithreaded™)

def install(self, spec, prefix):
with working_dir('spack-build', create=True):
cmake(' -DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=° + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
make()
make("install™)

Simple Python DSL
— Packages are classes (ala homebrew)
— Directives use the same spec syntax

Metadata at the class level

Versions

Dependencies

<« === Patches, variants, resources, conflicts, etc.
— (not shown)

== |nstall logic in instance methods

Lawrence Livermore National Laboratory
LLNL-PRES-745747

O github.com/spack

4’ @spackpm NS4

Depend on interfaces (not implementations)

with virtual dependencies

mp1i is a virtual dependency

Install the same package built with two
different MPI implementations:

mpileaks

libdwarf
B __w

1lpath
cattPath i—p dyninst __p| libelf

$ spack install mpileaks “mvapich

Virtual dependencies can be versioned:

$ spack install mpileaks “openmpi@l.4:

Virtual deps are replaced with a valid

implementation at resolution time.
— If the user didn’t pick something and there
are multiple options, Spack picks.

class Mpileaks(Package):
depends_on("mpi@2:™") dependent
class Mvapich(Package): provider

provides("mpi@l1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package): .
provides("mpi@:2.2" when="@1.6.5:") provider

Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm _NA‘&%

LLNL-PRES-745747

Spack builds packages with compiler wrappers

; Spack = Similar to homebrew “shims”

' Process - = Forked build process isolates environment for each build

: Use compiler wrappers to add include, lib, and RPATH flags
E = RPATHSs ensure that the correct dependencies are found

automatically at runtime.

Install dep1 Install dep2 Install package

Build

Set up environment
Process

J .
Jopt/ic-15.1/bin/icc , Compiler wrappers
/opt/ic-15.1/bin/icpc | (spack-cc, spack-c++, spack-f77, spack-f90)
/opt/ic-15.1/bin/ifort
/opt/ic-15.1/bin/ifort

CC
CXX
F77
FC

spack/env/intel/icc SPACK_CC
spack/env/intel/icpc SPACK_CXX
spack/env/intel/ifort SPACK_F77
spack/env/intel/ifort SPACK_FC

-L /depl-prefix/lib
-W1,-rpath=/depl-prefix/lib

PATH = spack/env:$PATH
CMAKE_PREFIX_PATH
LIBRARY_PATH

1
1
1
1
1
-1 /depl-prefix/include :
1
1
1
1
1

install(Q)

1
1
1
1
1
1
1
1
1
1
1
: PKG_CONFIG_PATH
1
1
1
1
1
1
1
1
1
1

Lawrence Livermore National Laboratory O github.com/spack ’ @spackpm NIYSE 6

LLNL-PRES-745747

Hashes handle combinatorial software complexity.

Dependency DAG = Each unique dependency graph is a unique
L configuration.
mpileaks —a / libdwarf]]] _] _
callpath Ll e [—— M ar | ® Each configuration installed in a unique directory.

i — Configurations of the same package can coexist.
Installation Layout

spack/opt/ = Hash of directed acyclic graph (DAG) metadata is
1inu;zzgzgt>2<§6_s4/ appended to each prefix |
mpileaks—1.1-0F54bf34cadk/ — Note: we hash the metadata, not the artifact.
intel-14.1/ .
bgq/ ndfs-1.8.15-tiridaasnaiz/ = |nstalled packages automatically find dependencies
X.L_lﬁ(#é-l-s.16—fqb3a15abrwx/ — Spack embeds RPATHSs in binaries.
— No need to set LD_LIBRARY_PATH

— Things work the way you built them

‘ Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm _NA‘&%

LLNL-PRES-745747 —— —

Spack’s dependency model centers around “concretization”

Similar to other dependency resolvers, but solves for
more than just package and version.

User input: abstract spec .
mpileaks ~callpath@l.0+debug ~libelf@0.8.11

mpileaks@2.3
%gcc@4.7.3 -

Unin-ppios Full spec is stored in a file in the installation directory
\ \ — Can reinstall same build with:

spack install -f spec.yaml
callpath@l.o callpath@l.o

+debug %gcc@a4.7.3+debug

=linux-ppc64
C> mpi dyninst

mpileaks

wect spec.yaml

- mpileaks:
arch: Tinux-x86_64
compiler:

L\

mpich@3.0.4 dyninst@8.1.2
%gcc@4.7.3 %gcc@4.7.3
=linux-ppc64 =linux-ppc64

name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy?7

Store

Concretize

variants: {}
version: '1.0"

libdwarf@20130729

libdwarf

/

libelf@0.8.11

Abstract, normalized spec
with some dependencies.

%gcc@4.7.3
=linux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

Concrete spec is fully constrained
and can be built.

mpich: aa4ar6ifj23yijgmdabeakpejcli7z2t3
hash: 33h3jjhxi7pbgyznSptgyes7sghyprujh

- adept-utils:
arch: Tinux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjimSdk43a7gnowlq
mpich: aa4ar6ifj23yijgmdabeakpejcli7z2t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

Detailed provenance is stored
with the installed package

Lawrence Livermore National Laboratory
LLNL-PRES-745747

O github.com/spack

Y @spackpm

Source installs are great, but they’re slow

= Most people prefer using a binary package manager
— Binary packages typically use portable code
— Binary installs are typically a lot slower than what you get from building from source

= We'd like to have the best of both worlds:
— Optimized buids for specific machine models (skylake, haswell, ivy bridge, etc.)
— Binary packages available without having to build from source

= What’s needed?
1. Binary packaging capability
2. Metadata describing architecture-specific builds
3. Good dependency resolution to select optimized or generic versions of packages

W Lovrence Livermore Nationai Laboratory 0 github.com/spack %' @spackpm

https://github.com/spack/spack/releases/

We recently released Spack v0.11

2,178 packages (up from 1,114 a year ago)

Big features for users:

— Relocatable binary packages (spack buildcache)

— Full support for Python 3

— Improved module support; custom module templates using jinja2

Many improvements for packagers:

— Multi-valued variants

— Test dependency type

— Packages can patch their dependencies (not just themselves)

Many speed improvements (to Spack itself)

Lawrence Livermore National Laboratory 0 github.com/spack %' @spackpm NUYSE 10

Binary packaging in Spack v0.11

Spack v0.11 has a new spack buildcache command:

spack buildcache create <spec> # create a new binary package
spack buildcache list # 1list available binaries
spack buildcache install # install a binary package (specifically)

Typically, install is not needed; you can just do:

spack install --use-cache # prefer binaries if available

We don’t enable binaries by default yet
— We'll make —use-cache default when we start hosting stable binaries

Thanks to our collaboration with Fermilab, CERN, and Kitware for this feature!

Lawrence Livermore National Laboratory O github,com/spack , @spackpm NOYSE 1

LLNL-PRES-745747

How to make a binary

1. Set up GNU PG for binary signing
— Unsigned binaries can be created but are discouraged

spack gpg create "Todd Gamblin" tgamblin@gmail.com # create a new signing keypair
spack gpg init # trust initial keypair

2. Install something

spack install m4 # install m4
spack find
==> 2 installed packa

es.
-- dqrwin—elcapltan—ng_G4 / clang@8.0.0-apple —-------————-——-—-
libsigsegv@Z .11 m4@1.4.18

3. Run spack buildcache create on that thing

spack buildcache create -d /path/to/mirror m4 # create a binary package in mirror

= Binaries and metadata for the package and its dependencies will be in:
/path/to/mirror/build_cache/

Lawrence Livermore National Laboratory O github.com/spack ’ @spackpm NOYSE »2

LLNL-PRES-745747

Binary mirror structure

mirror/

—build_cache
F—darwin-elcapitan-x86_64
| L—clang-8.0.0-apple
I F—1libsigsegv-2.11
| | L— darwin-elcapitan-x86_64-clang-8.0.0-apple-libsigsegv-2.11-5rjv56uui3crfmsgsqgqab52yfhrot4b. spack
| L—m4-1.4.18
I L— darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-egbzieloqgiwxfeddrksmekvfqia7mgbu.spack
F— darwin-elcapitan-x86_64-clang-8.0.0-apple-libsigsegv-2.11-5rjv56uui3crfmsgsqgqab52yfhrot4b.spec.yaml
F— darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-egbzielogiwxfeddrksmekvfqia7mgbu. spec.yaml
L— 1index.html

= Binaries go in build_cache/<platform>/<compiler>/<pkg-version>

= Metadata for all packages is (currently) kept at the top level
— WEe'll need to index these files eventually

= build_cache subdirectory sits inside of a Spack mirror directory
— Makes it easy to add binaries to an existing source mirror

= This structure is very easy to host in something like S3, a web server, or a shared filesystem

Lawrence Livermore National Laboratory O githUb.COm/SpaCk ’ @S packpm

LLNL-PRES-745747

NYSE 13

Pointing Spack to a mirror

= Spack v0.11 has a new spack buildcache command:

$ spack mirror add mypkgs https://example.spack-mirror.com/mirror

= You can verify that it worked by looking at what mirrors are configured:

$ spack mirror list
mypkgs https://example.spack-mirror.com/mirror

= Mirrors can contain source tarballs and binaries
— Detailed info in docs on mirrors.yaml

Lawrence Livermore National Laboratory O github.com/spack , @s packpm _I_V..A'__.&fé 14

LLNL-PRES-745747

How fetching works in spack

spack install mpileaks 1

load mpileaks/package.py from repo
Concretize

fetch source code

from var/spack/cache (local mirror)

fetch from user mirrors

fetch from package URL

Install from binary

'

verify signature
install

relocate

Build from source

'

verify checksum

. Binary ves configure
available? build
| No install
Lawrence Livermore National Laboratory O github.com/spack Y @spackpm NAUYSE 15

What’s in a Spack binary package?

$ tar tzf darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-egbzieloqiwxfed4drksmekvfqia?mgbu.spack

darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-egbzieloqiwxfeddrksmekvfqia7mgbu.tar.gz
darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqgbzieloqiwxfed4drksmekvfqia7mgbu.spec.yaml
darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqgbzieloqiwxfeddrksmekvfqia7mgbu.spec.yaml.asc

= The binary is just a tarball

= Contains:
1. Another tarball of the installed prefix
2. The spec.yaml:

 describes the build (Spack metadata)
« Contains a special entry with the checksum of the source tarball (maps spack hash to SHA256)

3. Asignature
* tells us we can trust the spec.yaml

Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm .NA‘&_% 16

LLNL-PRES-745747 —— —

Why do we checksum source but sign binaries?

Other systems provide checksums for sources and binaries in their package files
— e.g., homebrew “bottles”

In Spack, the number of binaries associated with a source tarball can be very large!
— We could have thousands of binaries for the same source:

« Different flags, different build options etc.
— Each of these would have a different Spack

Putting checksums for all of these in the package files:

— Would add a lot of extra bytes to a package repository

— Is unmaintainable

— Means that we have to update package.py files whenever we update a mirror

With signing, the client can trust one or several keys and verify a large number of
packages with a small number of public keys

‘ Lawrence Livermore National Laboratory O github.com/spack y @S packpm _.NA‘S_?E 17

LLNL-PRES-745747 —— —

What’s relocation?

= When Spack creates a binary package, it
traverses the installation directory and
examines the files
— Uses the file command

= |t records the files that need to be relocated
after installation:
— Libraries with RPATHSs
— Shell scripts with #! Lines

= After installation, Spack:
— rewrites RPATHs with patchelf (Linux) or
install_name_tool (macOS)
— Rewrites #! lines to point to the Spack
installation on the installing machine

Install is faster b/c we record the needed
relocations at package creation time

Installation Layout

spack/opt/

linux-rhel7-x86_64/
gcc-4.7.2/

mpileaks-1.1-0f54bf34cadk/

bin/

lib/

mpileaks-run

libmpileaks.so

We try to make root-relative RPATHs when

possible, but don’t always get everything.

We also rewrite RPATHSs to directories within the spack
root fi the install machine uses a different layout.

We are not currently relocating compiler runtime paths
— We should. This is work in progress

Lawrence Livermore National Laboratory

LLNL-PRES-745747 O githUb-com/SpaCk

%W @spackpm

NIYSE 18

How do we decide which binaries to fetch?

Current
= We currently only fetch binaries if
they satisfy the exact hash result of

Fetch exact hashes, concretization

Concretize if available

= This doesn’t leave a lot of room for
change in the system
— Small changes in Spack mean
having to build from source again
— Works best on a stable release

gcced. 7.3
::::::::::::

uuuuu

= We are working on a new
concretizer that will consider
available binary specs

— Doing this better requires a
backtracking SAT solve

Download available
specs from mirror

Concretize

Prefer available binaries
in concretization

Lawrence Livermore National Laboratory 0 github.com/spack Y @spackpm NUYSE 19

Spack can ship optimized binaries

= The Spack architecture descriptor currently includes:

— Platform: cray, mac, linux, bgq

« Meant to represent a family of machines with potentially many OS/target combinations
— 0S: rhel6, rhel7, ubuntul4, elcapitan, sierra, centos6, centos7, etc.
— Target:

* Generic: x86_64, ppcbdle, etc.

 Specific: haswell, ivybridge, knl, power8, power9, etc.

= Some triples:
— darwin-sierra-x86_64
— darwin-elcapitan-x86_64
— cray-cnl6-knl
— cray-cnl6-haswell

= These architecture descriptors are part of the binary metadata
— If we can fetch an index of available packages first, we can be picky about what binaries we want
— This is a core spec parameter in Spack, not just a naming convention for packages

Lawrence Livermore National Laboratory 0 github.com/spack ’ @S packpm .NA‘&% 20

LLNL-PRES-745747 —— —

Detecting optimized architectures

= Currently Spack will only use an optimized architecture descriptor on Cray
— We get the architecture name from the Cray Programming Environment
— We can know whether we’re building for Haswell, Broadwell, KNL, etc.

= We have work in progress that detects these names for Intel, AMD, Power,

and ARM hardware (looking at available info in /proc/cpuinfo, etc.)

— We're planning to shift to a model where we use the specific descriptor by
default

— We would still allow a user to set preferences to build generic if they want

— Important for CERN and Fermi collaborators who run heterogeneous clusters

= Once this is done, we do plan to make arch-specific binaries available.

‘ Lawrence Livermore National Laboratory O github.comlspack ’ @spackpm _NA‘_\SJ_?’E 21

LLNL-PRES-745747

Some issues with optimized binaries

= Architectures like ARM don’t lend themselves to concise descriptors.
— We may need to be more fine-grained here

= We may need to add a more fine-grained architecture descriptor that just exposes
the instruction sets available on the machine

)

— E.g., instead of “haswell”, put “ssed.2, avx, avx2, etc.”
— These attributes may actually be easier for packagers and maintainers to use

= We need a setting on the user side (e.g. in packages.yaml) that lets them choose
what the minimum architecture is for compatibility
— This seems easier to do with well known system names

‘ Lawrence Livermore National Laboratory O github.com/spack y @S packpm _.NA‘S_?E 22

LLNL-PRES-745747 —— —

Tuning for optimized binaries may be tricky

= Most compilers give you two knobs to control architecture-specific tuning:
-march=[genericlnative]
-mtune=[genericlnative]

— If you tune generic for an older architecture, it will run fine on that architecture and on

newer architectures.
— If you tune native, you’ll get code that only runs fast on the specific architecture, and may

not perform as well on future chips.

= |In Spack, we might want policies like this:
— “Generic tuning, with code no later than sandy bridge”, e.g. if sandy bridge is the older

architecture on a heterogeneous cluster
— “Native tuning, just for this machine”, e.g., if we know we want to optimize for a long-lived,

homogeneous cluster.

Lawrence Livermore National Laboratory O github.com/spack y @s packpm !M!!&i 23

LLNL-PRES-745747

Building a primary binary mirror for Spack

= We're currently setting up build automation to create binaries for:
— All default package configurations in releases (result of spack install <name>)

— Selected other slices of those configuration spaces, e.g.:
* X MPI versions
« x Compilers
+ x0S’s
X large-scale DOE machines (Cori, Theta, Titan, Summit, etc.)

= Once this is done, we’ll also continuously build packages for the develop branch as PRs

come in
— WE’ll need to determine when to purge old builds and binaries
— Depends on analytics

= We are currently planning to host binaries in S3
— but Jfrog/bintray sounds interesting. Maybe we should talk to them.

Lawrence Livermore National Laboratory O github.com/spack ’ @S packpm .NA‘&_% 24

LLNL-PRES-745747 —— —

Summary

We built relocatable binary packaging into Spack
Current projects: @ S pac k

1. Binary build infrastructure https://spack.io

2. Better concretization to support optimized
binaries

ck
3. Compiler library relocation @ Spa

Shooting for September to have all of this done.

‘ Lawrence Livermore National Laboratory
LLNL-PRES-745747

O github.com/spack %" @spackpm

LLg Lawrence Livermore
National Laboratory

