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Spack is a general purpose, from-source package manager

§ Inspired somewhat by homebrew and nix

§ Targets HPC and scientific computing
— Community is growing!

§ Goals:
— Facilitate experimenting with performance options
— Flexibility.  Make these things easy:

• Build packages with many different:
– compilers/versions/build options

• Change compilers and flags in builds (keep provenance)
• Swap implementations of ABI-incompatible libraries

– MPI, BLAS, LAPACK, others like jpeg/jpeg-turbo, etc.
— Build software stacks for scientific simulation and 

analysis
— Run on laptops, Linux clusters, and some of the 

largest supercomputers in the world

Spack
https://spack.io
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Spec CLI syntax makes it easy to install different ways

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads     +/- build option
$ spack install mpileaks@3.3 cflags="-O3 –g3" setting compiler flags
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

§ Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

§ Spec syntax is recursive
— ^ (caret) adds constraints on dependencies
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Spack packages are templates: they define how to build a spec

from spack import *

class Dyninst(Package):
"""API for dynamic binary instrumentation.""”

homepage = "https://paradyn.org"
url = "http://www.paradyn.org/release8.1.2/DyninstAPI-8.1.2.tgz"

version('8.2.1', 'abf60b7faabe7a2e’)
version('8.1.2', 'bf03b33375afa66f’)
version('8.1.1', 'd1a04e995b7aa709’)

depends_on("cmake", type="build")

depends_on("libelf", type="link")
depends_on("libdwarf", type="link")
depends_on("boost @1.42: +multithreaded")

def install(self, spec, prefix):
with working_dir('spack-build', create=True):

cmake('-DBoost_INCLUDE_DIR=‘ + spec['boost'].prefix.include,
'-DBoost_LIBRARY_DIR=‘ + spec['boost'].prefix.lib,
'-DBoost_NO_SYSTEM_PATHS=TRUE’
'..')

make()
make("install")

Metadata at the class level

Versions

Install logic in instance methods

Dependencies

Patches, variants, resources, conflicts, etc.
(not shown)

Simple Python DSL
— Packages are classes (ala homebrew)
— Directives use the same spec syntax
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§ mpi is a virtual dependency

§ Install the same package built with two 
different MPI implementations:

§ Virtual deps are replaced with a valid 
implementation at resolution time.
— If the user didn’t pick something and there 

are multiple options, Spack picks.

Depend on interfaces (not implementations) 
with virtual dependencies

$ spack install mpileaks ^mvapich

$ spack install mpileaks ^openmpi@1.4:

mpileaks

mpi

callpath dyninst

libdwarf

libelf

class Mpileaks(Package):
depends_on("mpi@2:")

class Mvapich(Package):
provides("mpi@1” when="@:1.8")
provides("mpi@2” when="@1.9:")

class Openmpi(Package):
provides("mpi@:2.2" when="@1.6.5:")

Virtual dependencies can be versioned:

dependent

provider

provider
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Spack builds packages with compiler wrappers

Spack
Process

Set up environment

CC  = spack/env/intel/icc SPACK_CC  = /opt/ic-15.1/bin/icc
CXX = spack/env/intel/icpc SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/intel/ifort SPACK_F77 = /opt/ic-15.1/bin/ifort
FC  = spack/env/intel/ifort SPACK_FC  = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH   = ...      PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH      = ...

do_install()

Install dep1 Install dep2 Install package…

Build 
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers 
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Similar to homebrew “shims”
▪ Forked build process isolates environment for each build
▪ Use compiler wrappers to add include, lib, and RPATH flags
▪ RPATHs ensure that the correct dependencies are found 

automatically at runtime.
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§ Each unique dependency graph is a unique 
configuration.

§ Each configuration installed in a unique directory.
— Configurations of the same package can coexist.

§ Hash of directed acyclic graph (DAG) metadata is 
appended to each prefix
— Note: we hash the metadata, not the artifact.

§ Installed packages automatically find dependencies
— Spack embeds RPATHs in binaries.
— No need to set LD_LIBRARY_PATH
— Things work the way you built them

Hashes handle combinatorial software complexity.

spack/opt/
linux-rhel7-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

intel-14.1/
hdf5-1.8.15-lkf14aq3nqiz/

bgq/
xl-12.1/

hdf5-1-8.16-fqb3a15abrwx/
...

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

Hash
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Spack’s dependency model centers around “concretization”

mpileaks ^callpath@1.0+debug ^libelf@0.8.11

User input: abstract spec

Concrete spec is fully constrained
and can be built.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

§ Similar to other dependency resolvers, but solves for 
more than just package and version.

§ Full spec is stored in a file in the installation directory
— Can reinstall same build with:

spack install –f spec.yaml

Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}                                                                                                         
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}                                                                                                         
version: 1.0.1

...

spec.yaml

Detailed provenance is stored
with the installed package
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Source installs are great, but they’re slow

§ Most people prefer using a binary package manager
— Binary packages typically use portable code

— Binary installs are typically a lot slower than what you get from building from source

§ We’d like to have the best of both worlds:
— Optimized buids for specific machine models (skylake, haswell, ivy bridge, etc.)

— Binary packages available without having to build from source

§ What’s needed?
1. Binary packaging capability

2. Metadata describing architecture-specific builds

3. Good dependency resolution to select optimized or generic versions of packages
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We recently released Spack v0.11

§ 2,178 packages (up from 1,114 a year ago)

§ Big features for users:
— Relocatable binary packages (spack buildcache)
— Full support for Python 3
— Improved module support; custom module templates using jinja2

§ Many improvements for packagers:
— Multi-valued variants
— Test dependency type
— Packages can patch their dependencies (not just themselves)

§ Many speed improvements (to Spack itself)

https://github.com/spack/spack/releases/
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Binary packaging in Spack v0.11

§ Spack v0.11 has a new spack buildcache command:

spack buildcache create <spec> # create a new binary package
spack buildcache list # list available binaries
spack buildcache install # install a binary package (specifically)

§ Typically, install is not needed; you can just do:

spack install --use-cache # prefer binaries if available

§ We don’t enable binaries by default yet 
— We’ll make –use-cache default when we start hosting stable binaries

§ Thanks to our collaboration with Fermilab, CERN, and Kitware for this feature!
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How to make a binary

1. Set up GNU PG for binary signing
— Unsigned binaries can be created but are discouraged

spack gpg create "Todd Gamblin" tgamblin@gmail.com # create a new signing keypair
spack gpg init # trust initial keypair

2. Install something
spack install m4     # install m4
...
spack find
==> 2 installed packages.
-- darwin-elcapitan-x86_64 / clang@8.0.0-apple ------------------
libsigsegv@2.11 m4@1.4.18

3. Run spack buildcache create on that thing
spack buildcache create -d /path/to/mirror m4    # create a binary package in mirror

§ Binaries and metadata for the package and its dependencies will be in:
/path/to/mirror/build_cache/
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Binary mirror structure

§ Binaries go in build_cache/<platform>/<compiler>/<pkg-version>

§ Metadata for all packages is (currently) kept at the top level
— We’ll need to index these files eventually

§ build_cache subdirectory sits inside of a Spack mirror directory
— Makes it easy to add binaries to an existing source mirror

§ This structure is very easy to host in something like S3, a web server, or a shared filesystem

mirror/
!""build_cache

#""darwin-elcapitan-x86_64
$ !""clang-8.0.0-apple
$ #""libsigsegv-2.11
$ $ !"" darwin-elcapitan-x86_64-clang-8.0.0-apple-libsigsegv-2.11-5rjv56uui3crfmsgsqgqab52yfhr6t4b.spack
$ !""m4-1.4.18
$ !"" darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.spack
#"" darwin-elcapitan-x86_64-clang-8.0.0-apple-libsigsegv-2.11-5rjv56uui3crfmsgsqgqab52yfhr6t4b.spec.yaml
#"" darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.spec.yaml
!"" index.html
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Pointing Spack to a mirror

§ Spack v0.11 has a new spack buildcache command:

$ spack mirror add mypkgs https://example.spack-mirror.com/mirror

§ You can verify that it worked by looking at what mirrors are configured:

$ spack mirror list
mypkgs https://example.spack-mirror.com/mirror

§ Mirrors can contain source tarballs and binaries
— Detailed info in docs on mirrors.yaml
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How fetching works in spack

Concretize

fetch source code

build

load mpileaks/package.py from repo

fetch from user mirrors

from var/spack/cache (local mirror)

fetch from package URL

install

install

relocate

configureBinary 
available?

Yes

No

Install from binary

Build from source

verify signature

verify checksum
...

spack install mpileaks
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What’s in a Spack binary package?

§ The binary is just a tarball

§ Contains:
1. Another tarball of the installed prefix
2. The spec.yaml:

• describes the build (Spack metadata)
• Contains a special entry with the checksum of the source tarball (maps spack hash to SHA256)

3. A signature
• tells us we can trust the spec.yaml

$ tar tzf darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.spack

darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.tar.gz
darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.spec.yaml
darwin-elcapitan-x86_64-clang-8.0.0-apple-m4-1.4.18-eqbzieloqiwxfe4drksmekvfqia7mqbu.spec.yaml.asc
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Why do we checksum source but sign binaries?

§ Other systems provide checksums for sources and binaries in their package files
— e.g., homebrew “bottles”

§ In Spack, the number of binaries associated with a source tarball can be very large!
— We could have thousands of binaries for the same source:

• Different flags, different build options etc.
— Each of these would have a different Spack

§ Putting checksums for all of these in the package files:
— Would add a lot of extra bytes to a package repository
— Is unmaintainable
— Means that we have to update package.py files whenever we update a mirror

§ With signing, the client can trust one or several keys and verify a large number of 
packages with a small number of public keys
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What’s relocation?

§ When Spack creates a binary package, it 

traverses the installation directory and 

examines the files

— Uses the file command

§ It records the files that need to be relocated 

after installation:

— Libraries with RPATHs

— Shell scripts with #! Lines

§ After installation, Spack:

— rewrites RPATHs with patchelf (Linux) or 

install_name_tool (macOS)

— Rewrites #! lines to point to the Spack

installation on the installing machine

§ Install is faster b/c we record the needed 

relocations at package creation time

spack/opt/
linux-rhel7-x86_64/

gcc-4.7.2/
mpileaks-1.1-0f54bf34cadk/

bin/
mpileaks-run

lib/
libmpileaks.so

Installation Layout

§ We try to make root-relative RPATHs when 

possible, but don’t always get everything.

§ We also rewrite RPATHs to directories within the spack

root fi the install machine uses a different layout.

§ We are not currently relocating compiler runtime paths

— We should.  This is work in progress
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How do we decide which binaries to fetch?

§ We currently only fetch binaries if 
they satisfy the exact hash result of 
concretization

§ This doesn’t leave a lot of room for 
change in the system
— Small changes in Spack mean 

having to build from source again
— Works best on a stable release

§ We are working on a new 
concretizer that will consider 
available binary specs
— Doing this better requires a 

backtracking SAT solve

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

Current

In progress

Fetch exact hashes, 
if available 

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

Concretize

Prefer available binaries 
in concretization

Download available 
specs from mirror
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Spack can ship optimized binaries

§ The Spack architecture descriptor currently includes:
— Platform: cray, mac, linux, bgq

• Meant to represent a family of machines with potentially many OS/target combinations
— OS: rhel6, rhel7, ubuntu14, elcapitan, sierra, centos6, centos7, etc.
— Target:

• Generic: x86_64, ppc64le, etc.
• Specific: haswell, ivybridge, knl, power8, power9, etc.

§ Some triples:
— darwin-sierra-x86_64
— darwin-elcapitan-x86_64
— cray-cnl6-knl
— cray-cnl6-haswell

§ These architecture descriptors are part of the binary metadata
— If we can fetch an index of available packages first, we can be picky about what binaries we want
— This is a core spec parameter in Spack, not just a naming convention for packages
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Detecting optimized architectures

§ Currently Spack will only use an optimized architecture descriptor on Cray
— We get the architecture name from the Cray Programming Environment

— We can know whether we’re building for Haswell, Broadwell, KNL, etc.

§ We have work in progress that detects these names for Intel, AMD, Power, 
and ARM hardware (looking at available info in /proc/cpuinfo, etc.)
— We’re planning to shift to a model where we use the specific descriptor by 

default

— We would still allow a user to set preferences to build generic if they want
— Important for CERN and Fermi collaborators who run heterogeneous clusters

§ Once this is done, we do plan to make arch-specific binaries available.
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Some issues with optimized binaries

§ Architectures like ARM don’t lend themselves to concise descriptors.
— We may need to be more fine-grained here

§ We may need to add a more fine-grained architecture descriptor that just exposes 
the instruction sets available on the machine
— E.g., instead of “haswell”, put “sse4.2, avx, avx2, etc.”
— These attributes may actually be easier for packagers and maintainers to use

§ We need a setting on the user side (e.g. in packages.yaml) that lets them choose 
what the minimum architecture is for compatibility
— This seems easier to do with well known system names
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Tuning for optimized binaries may be tricky

§ Most compilers give you two knobs to control architecture-specific tuning:
-march=[generic|native]
-mtune=[generic|native]

— If you tune generic for an older architecture, it will run fine on that architecture and on 
newer architectures.

— If you tune native, you’ll get code that only runs fast on the specific architecture, and may 
not perform as well on future chips.

§ In Spack, we might want policies like this:
— “Generic tuning, with code no later than sandy bridge”, e.g. if sandy bridge is the older 

architecture on a heterogeneous cluster
— “Native tuning, just for this machine”, e.g., if we know we want to optimize for a long-lived, 

homogeneous cluster.
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Building a primary binary mirror for Spack

§ We’re currently setting up build automation to create binaries for:
— All default package configurations in releases (result of spack install <name>)
— Selected other slices of those configuration spaces, e.g.:

• x MPI versions
• x Compilers
• x OS’s
• x large-scale DOE machines (Cori, Theta, Titan, Summit, etc.)

§ Once this is done, we’ll also continuously build packages for the develop branch as PRs 
come in
— We’ll need to determine when to purge old builds and binaries
— Depends on analytics

§ We are currently planning to host binaries in S3
— but Jfrog/bintray sounds interesting.  Maybe we should talk to them.
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Summary

We built relocatable binary packaging into Spack

Current projects:

1. Binary build infrastructure

2. Better concretization to support optimized 
binaries

3. Compiler library relocation

Shooting for September to have all of this done.

Spack

Come and get Spack stickers!

https://spack.io




