
How to keep your embedded Linux

up and running?

Krzysztof Opasiak

Samsung R&D Institute Poland



Agenda

What’s the problem?

How do server guys do this?

How do we do this?

Summary

Q & A

1



What’s the problem?



California

3



Houses in California

4



Drought

5



So why not just water the lawn?

• It’s costly

• It takes some time

• You cannot leave it

unattended

6



Let’s paint it green!

7



Your product

• UI

• Performance

• Reliability

User Experience

8



Your product

• UI

• Performance

• Reliability

User Experience

8



Our case

• Minimal Tizen OS version

• Images customizable via web server

• Dedicated for small IoT devices (Artik, RPI)

• A base for many different products

• Anyone can say “My product runs TizenOS”

9



Your own code/Good open source code

• Code Review

• Tests

• Continuous Integration

• Static analysis

It’s still imperfect!
…but please remember to do this

10



Your own code/Good open source code

• Code Review

• Tests

• Continuous Integration

• Static analysis

It’s still imperfect!

…but please remember to do this

10



Your own code/Good open source code

• Code Review

• Tests

• Continuous Integration

• Static analysis

It’s still imperfect!
…but please remember to do this

10



Tons of foreign code

• Has it been reviewed properly?

• Has it been well tested?

• Has CI practices been used?

• Has static analysis been used?

No one knows:(

11



Tons of foreign code

• Has it been reviewed properly?

• Has it been well tested?

• Has CI practices been used?

• Has static analysis been used?

No one knows:(

11



Typical problems

• Memory leaks

• FD leaks

• Bugs (service failures)

• Boot loops

• Other which we don’t know now

(extensibility required)

12



How to fix them?

• Service restarting

• Fix scripts

• Recovery mode

• Report to developer

• Other methods which we don’t know now

(extensibility required)

13



How do server guys do this?



systemd

Restart=

Restart the service based on exit method:

OnFailure=

A space-separated list of one or more units

that are activated when this unit enters the

”failed” state.

15



Nagios

• Nagios Core

• Scheduler

• Web Interface

• Plugins (checkers)

• Passive checks

• Event Handlers

• Shell scripts

• Lack of global state

• Heavy

16



Icinga

• Fork of Nagios

• More modular design

• Mobile client

• Quite similar functionality

• Heavy

17



Zabbix

• Built from scratch

• Only single DB deployment

• Graphs out of the box

• Events

• Trigger events

• Discovery events

• Auto registration events

• Internal Events

• Rules engine

• Heavy

18



In general

• Web interface

• Periodic checks

• Shell scripts

• Some passive check also

• Dependencies

• Delays

They are all…

Web Scale!

19



Couldn’t we just fit this into YOUR pockets?

• We don’t want central decision server

(Less we know, the better we sleep)

• Focus on passive checks (power consumption)

• Single machine monitoring

• No Web interface

• Low delay

• Light even with dependencies

20



How do we do this?



faultd architecture

22



Listeners

• systemd listener

• listen dbus notification from systemd

• uses private bus

• reports suitable event when some service failed

• audit listener

• Every service declares max resource usage

• Limits are enforces using rlimits

• Audit syscall is used to notify about reaching the limit

(-EMFILE for example)

• There may be more service failures:(

23



rlimit-events off-topic

There is no free lunch

• audit

• Measured overhead for 40 000 open() syscall:

• 33% for cold file

• 45% for hot file

• rlimit-events

• RFC posted on LKML

• Measured overhead for 40 000 open() calls:

• 5.6% for hot file

• 1.6% for cold file

24



Decision Makers

• VIP process handler

• Standard recovery

• N times recover the service

• M times reboot the platform

• Enter recovery

• Resource violation

25



Actions

• Recover service

• Run recovery unit (if defined)

• Restart service

• Restart service

• Reboot

• Forced reboot

• Reboot using systemd

• Reboot using deviced (tizen specific)

• Reboot to recovery

• Reboot with param

26



Database

• Every event that goes through the core is stored

in database

• This gives us a nice chain:

• trigger

• decision

• action

• Initially we’ve chosen EJDB

• Now we are switching to SQLite

27



faultd

28



Summary



Summary

• Server monitoring tools are useful

• Unfortunately too big for our devices

• Audit syscall is not free

• EJDB is fast but overweight in terms of storage:(

• faultd is very exstensible so try it

• Maybe it fits also your needs

30



Q & A



Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174

k.opasiak@samsung.com

32


	What's the problem?
	How do server guys do this?
	How do we do this?
	Summary
	Q & A

