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What’s the problem?



California
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Houses in California
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Drought
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So why not just water the lawn?

• It’s costly

• It takes some time

• You cannot leave it

unattended
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Let’s paint it green!
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Your product

• UI

• Performance

• Reliability

User Experience
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Our case

• Minimal Tizen OS version

• Images customizable via web server

• Dedicated for small IoT devices (Artik, RPI)

• A base for many different products

• Anyone can say “My product runs TizenOS”
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Your own code/Good open source code

• Code Review

• Tests

• Continuous Integration

• Static analysis

It’s still imperfect!
…but please remember to do this
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Tons of foreign code

• Has it been reviewed properly?

• Has it been well tested?

• Has CI practices been used?

• Has static analysis been used?

No one knows:(
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Typical problems

• Memory leaks

• FD leaks

• Bugs (service failures)

• Boot loops

• Other which we don’t know now

(extensibility required)
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How to fix them?

• Service restarting

• Fix scripts

• Recovery mode

• Report to developer

• Other methods which we don’t know now

(extensibility required)
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How do server guys do this?



systemd

Restart=

Restart the service based on exit method:

OnFailure=

A space-separated list of one or more units

that are activated when this unit enters the

”failed” state.
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Nagios

• Nagios Core

• Scheduler

• Web Interface

• Plugins (checkers)

• Passive checks

• Event Handlers

• Shell scripts

• Lack of global state

• Heavy
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Icinga

• Fork of Nagios

• More modular design

• Mobile client

• Quite similar functionality

• Heavy

17



Zabbix

• Built from scratch

• Only single DB deployment

• Graphs out of the box

• Events

• Trigger events

• Discovery events

• Auto registration events

• Internal Events

• Rules engine

• Heavy
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In general

• Web interface

• Periodic checks

• Shell scripts

• Some passive check also

• Dependencies

• Delays

They are all…

Web Scale!
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Couldn’t we just fit this into YOUR pockets?

• We don’t want central decision server

(Less we know, the better we sleep)

• Focus on passive checks (power consumption)

• Single machine monitoring

• No Web interface

• Low delay

• Light even with dependencies
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How do we do this?



faultd architecture
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Listeners

• systemd listener

• listen dbus notification from systemd

• uses private bus

• reports suitable event when some service failed

• audit listener

• Every service declares max resource usage

• Limits are enforces using rlimits

• Audit syscall is used to notify about reaching the limit

(-EMFILE for example)

• There may be more service failures:(
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rlimit-events off-topic

There is no free lunch

• audit

• Measured overhead for 40 000 open() syscall:

• 33% for cold file

• 45% for hot file

• rlimit-events

• RFC posted on LKML

• Measured overhead for 40 000 open() calls:

• 5.6% for hot file

• 1.6% for cold file
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Decision Makers

• VIP process handler

• Standard recovery

• N times recover the service

• M times reboot the platform

• Enter recovery

• Resource violation
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Actions

• Recover service

• Run recovery unit (if defined)

• Restart service

• Restart service

• Reboot

• Forced reboot

• Reboot using systemd

• Reboot using deviced (tizen specific)

• Reboot to recovery

• Reboot with param
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Database

• Every event that goes through the core is stored

in database

• This gives us a nice chain:

• trigger

• decision

• action

• Initially we’ve chosen EJDB

• Now we are switching to SQLite
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faultd
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Summary



Summary

• Server monitoring tools are useful

• Unfortunately too big for our devices

• Audit syscall is not free

• EJDB is fast but overweight in terms of storage:(

• faultd is very exstensible so try it

• Maybe it fits also your needs
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Q & A



Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174

k.opasiak@samsung.com
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