Linux Test Project introduction

"Breaking penguins since 2000”

Cyril Hrubis
SUSE Linux

4. February 2018

About myself

Cyril Hrubis
(aka metan on freenode)

v

Linux user and C programmer since 2000
SUSE employee since 2007

Kernel Automation QA since 2008

LTP upstream developer since 2009

v

v

v

LTP Origin

The Linux Test Project
Introduction

The Linux™ Test Project is a joint project with SGI™, IBM®, and
‘OSDL with a goal to deliver test suites to the open source community
that validate the reliability, robustness, and stability of Linux. The Linux
Test Project is a collection of tools for testing the Linux kernel and
related features. Our goal is to improve the Linux kernel by bring test
automation to the kernel testing effort. Interested open source
contributors are encouraged to join the project.

sgl

» The sourceforge project was registered around 2000.

» In 2001 it contained about 100 simple syscalls tests
and a few testsuites collected from other sources.

|

SUSE.

Historicall problems

v

There was very little or no code review.

Build was often failing for less commmon configurations.
No build system, just bunch of random Makefiles.
There was little or no documentation.

v

v

v

Historicall problems

v

Fair amount of the testcases was failing randomly.

LTP was put together from pieces of testsuites some of
them dating back to the days of UNIX wars.

Third party testsuites were poorly integrated if at all.
“Sometimes stiches are sfill visible”

IBM hired, in good faith, junior developers to work on
syscall tests.

v

v

v

SUSE.

Current state “boring”

v

LTP adopted LKML coding style.
The git repository is hosted on GitHub.

Development process centers around patch review
on the mailing list.

Quaterly releases with aprox. 260 patches and 33
authors per release.

v

v

v

https://github.com/linux-test-project/ltp

Current state “boring”

v

Travis is used for compile testing.

We make sure that latest LTP works fine on currently
maintained distros.

Comprehensive test library that greatly simplifies
writing testcases.

We have APl documentation and tutorial on wiki.

v

v

v

https://github.com/linux-test-project/ltp/wiki/Test-Writing-Guidelines
https://github.com/linux-test-project/ltp/wiki/C-Test-Case-Tutorial

LTP Goals

The goal of the project was and is:
”Validate the reliability, robustness, and stability of Linux.”

» LTP focuses on functionality, regression and stress
testing for the Linux kernel and related features.

» LTP does not include benchmarking, there are
MMTests from Mel Gorman covering that.

» For filesystems testing it’s better to be combined with
xfstests.

SUSE.

LTP Challenges

» LTP project goal is a bit too broad.

» |t's difficult to even estimate how much
kernel-userspace APl does exists.

» LTP is large, roughly 4000 C sources and 500 scripfs.
» Mostly contains complicated low level code.

» Sometimes documentation for Kernel API/ABI is
missing, wrong or misleading.

» Kernel API/ABI cannot be changed, unless it can
(cgroups). “"WE DO NOT BREAK USERSPACE!"

LTP Content

LTP contains:
» ~1200 syscall testcases
» 1600 POSIX conformance tests

» Regression tests for Linux CVEs
(dirtycOw, stack_clash, meltdown, ...)

Various I/O stress tests

Network related tests

Realtime testsuite

Linux container, controller, and namespace tests

v

v

v

v

SUSE.

LTP Test Design Goals

» Languages of choice are C and portable shell.
» Each test is an executable.

» Each test is as self-contained as possible.

» Each test runs automatically.

» Overall test status is passed as an exit value.

» Additional information is printed to stdout.

» Global parameters are passed via environment
variables.

FAQ): To test or not to test?

"The upstream kernel is thoroughly tested so there is not
point in testing it in-house, right?”

Turns out that this only applies if you haven’t applied any
patches on the top of the upstream kernel.

FAQ: How to run LTP test(s)?

We have to compile LTP from released tarball or git first.
(We have mini howto for compiling LTP in doc/ directory.)

But basically it should be as easy as:
» git clone https://github.com/.../ltp.git
» cd ltp && make autotools
or
» wget https://.../ltp-full-20180118.tar.bz2
» tar xf ltp-x && cd ltp—«*
then
» configure
» make —jS$(getconf _NPROCESSORS_ONLN)

SUSE.

https://github.com/linux-test-project/ltp/blob/master/doc/mini-howto-building-ltp-from-git.txt
https://github.com/linux-test-project/ltp.git
https://github.com/linux-test-project/ltp/releases/download/20180118/ltp-full-20180118.tar.bz2

FAQ: How to run LTP test?

Most of the testcases can be executed from the
source tree:

» cd testcases/kernel/syscalls/fcntl
» PATH=SPATH:S$SPWD ./fcntl02

tst_test.c:980: INFO: Timeout per run is Oh 05m 00s

fcntl102.c:70: PASS: fcntl (fcntl02_13303, F_DUPFD, 0) returned 4
fecntl1l02.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 1) returned 4
fcnt102.c:70: PASS: fcntl (fcntl1l02_13303, F_DUPFD, 2) returned 4
fecntl1l02.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 3) returned 4
fecntl102.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 10) returned 10
fcntl1l02.c:70: PASS: fentl (fentl02_13303, F_DUPFD, 100) returned 100
Summary :

passed 6

failed 0

skipped O

warnings 0

SUSE.

FAQ: How to run LTP test?

Alternatively LTP can be installed.
» cd ltp && make install && cd /opt/ltp
» ./runltp —-f syscalls -s fcntl02

<<<test_output>>>
tst_test.c:980: INFO: Timeout per run is 0Oh 05m 00s

fcnt102.c:70: PASS: fcntl (fcntl02_13303, F_DUPFD, 0) returned 4
fecntl1l02.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 1) returned 4
fcntl1l02.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 2) returned 4
fcntl102.c:70: PASS: fcntl (fcntl02_13303, F_DUPFD, 3) returned 4
fentl102.c:70: PASS: fcntl (fcntl102_13303, F_DUPFD, 10) returned 10
fcnt102.c:70: PASS: fentl (fcntl1l02_13303, F_DUPFD, 100) returned 100
Summary :
passed 6
failed 0
skipped O
warnings 0
<<<execution_status>>>

- -

SUSE.

FAQ: How to run LTP network test?

Network test usually needs two machines with LTP installed
but then can also fall back to netork namespaces.
» /opt/ltp/testscripts/network.sh -6

network_settings 1 TINFO: initialize ’'lhost’ ’1ltp_ns_veth2’ interface
network_settings 1 TINFO: set local addr 10.0.0.2/24

network_settings 1 TINFO: set local addr £d00:1:1:1::2/64
network_settings 1 TINFO: initialize ’'rhost’ ’'ltp_ns_vethl’ interface
network_settings 1 TINFO: set remote addr 10.0.0.1/24
network_settings 1 TINFO: set remote addr fd00:1:1:1::1/64
network_settings 1 TINFO: wait for IPv6 DAD completion 1/5 sec
network_settings 1 TINFO: Network config (local —-- remote):
network_settings 1 TINFO: ltp_ns_veth2 —-- ltp_ns_vethl
network_settings 1 TINFO: 10.0.0.2/24 -- 10.0.0.1/24

network_settings 1 TINFO: fd00:1:1:1::2/64 —— £d00:1:1:1::1/64

<<<test_start>>>

tag=ping60l stime=1517391093

cmdline="ping0l.sh -6"

contacts=""

analysis=exit

<<<test_output>>>

ping0l 1 TINFO: ping6 with 8 16 32 64 128 256 512 1024 2048 CMP
ping0l 1 TPASS: ping6 -c 3 -s 8 £d00:1:1:1::1 >/dev/null passcQGWJSEp

» GIT repository:

https://github.com/linux-test-project/ltp
» Mailing list:

https://lists.linux.it/listinfo/ltp
> Wiki:

https://github.com/linux-test-project/ltp/wiki
> IRC:

#1ltp on freenode.net

SUSE.

https://github.com/linux-test-project/ltp
https://lists.linux.it/listinfo/ltp
https://github.com/linux-test-project/ltp/wiki

